Skip to main content
Log in

Vector dissipative light bullets in optical laser beam

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The dynamics of light bullets propagating in nonlinear media with linear/nonlinear, gain/loss and coupling described by the (2+1)-dimensional vectorial cubic–quintic complex Ginzburg–Landau (CGL) equations is considered. The evolution and the stability of the vector dissipative optical light bullets, generated from an asymmetric input with respect to two transverse coordinates x and y, are studied. We use the variational method to find a set of differential equations characterizing the variation of the light bullet parameters in the laser cavity. This approach allows us to analyze the influence of various physical parameters on the dynamics of the propagating beam and its relevant parameters. Then, we solve the original coupled (2+1)D cubic–quintic CGL equation using the split-step Fourier method. Numerical results and analytical predictions are confronted, and a good agreement between the two approaches is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.S. Kivshar, G.P. Agrawal, Optical solitons (2003)

  2. N. Efremidis, K. Hizanidis, J. Opt. Soc. Am. B 19, 1 (2002)

    Article  Google Scholar 

  3. S. Shwetanshumala, Prog. Electromag. Res. Lett. 3, 17 (2008)

    Article  Google Scholar 

  4. Z. Chen, M. Segev, D.N. Christodoulides, Rep. Prog. Phys. 75, 086401 (2012)

    Article  ADS  Google Scholar 

  5. M. Segev, Opt. Quant. Electron. 30, 503 (1998)

    Article  Google Scholar 

  6. E.A. Ultanir, G.I. Stegeman, C.H. Lange, F. Lederer, Opt. Lett. 29, 3 (2004)

    Google Scholar 

  7. V. Skarka, V.I. Berezhehiani, R. Mmiklaszewski, Phys. Rev. E. 56, 1080 (1997)

    Article  ADS  Google Scholar 

  8. D.J. Kaup, B.A. Malomed, R.S. Tasgal, Phys. Rev. E 48, 3049 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Gil, Phys. Rev. Lett. 70, 162 (1993)

    Article  ADS  Google Scholar 

  10. J. Lega, J.V. Maloney, A.C. Newell, Phys. Rev. Lett. 73, 2978 (1994)

    Article  ADS  Google Scholar 

  11. P. Kockaert, M. Haelterman, J. Opt. Soc. Am. B 16, 732 (1999)

    Article  ADS  Google Scholar 

  12. P. Coullet, L. Gil, F. Rocca, Opt. Commun. 73, 403 (1989)

    Article  ADS  Google Scholar 

  13. K. Staliunas, C.O. Weiss, Phys. D 81, 79 (1995)

    Article  Google Scholar 

  14. N.N. Akhmediev, V.V. Afanasjev, J.M. Soto-Crespo, Phys. Rev. E 53, 1190 (1996)

    Article  ADS  Google Scholar 

  15. J.M. Soto-Crespo, N.N. Akhmediev, V.V. Afanasjev, S. Wabnitz, Phys. Rev. E 55, 4783 (1997)

    Article  ADS  Google Scholar 

  16. E. Hernández-García, M. Hoyuelos, P. Colet, M. San Miguel, R. Montagne, Int. J. Bif. Chaos 9, 2257 (1999)

    Article  Google Scholar 

  17. A. Amengual, E. Hernández-García, R. Montagne, M.S. Miguel, Phys. Rev. Lett. 78, 4379 (1997)

    Article  ADS  Google Scholar 

  18. R. Montagne, E. Hernández-García, Phys. Lett. A 273, 239 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. L.M. Pismen, Phys. Rev. Lett. 72, 2557 (1994)

    Article  ADS  Google Scholar 

  20. L.M. Pismen, Phys. D 73, 244 (1994)

    Article  MathSciNet  Google Scholar 

  21. M.S. Miguel, Phys. Rev. Lett. 75, 425 (1995)

    Article  ADS  Google Scholar 

  22. M. Hoyuelos, E. Hernández-García, P. Colet, M.S. Miguel, Comput. Phys. Commun. 121, 414 (1999)

    Article  ADS  Google Scholar 

  23. E. Hernández-García, M. Hoyuelos, P. Colet, M.S. Miguel, Phys. Rev. Lett. 85, 744 (2000)

    Article  ADS  Google Scholar 

  24. M. Hoyuelos, E. Hernández-García, P. Colet, M.S. Miguel, Phys. D 174, 176 (2003)

    Article  MathSciNet  Google Scholar 

  25. A. Djazet, S.I. Fewo, C.B. Tabi, T.C. Kofané, On a laser (3+1)-dimensional vectorial cubic-quintic complex Ginzburg-Landau equation and modulational instability, (2019). https://doi.org/10.20944/preprints201910.0171.v1, submitted

  26. P.T. Dinda, A.B. Moubissi, K. Nakkeeran, Phys. Rev. E 64, 016608 (2001)

    Article  ADS  Google Scholar 

  27. B.G.O. Essama, J. Atangana, F.B. Motto, B. Mokhtari, E.C. Noureddine, T.C. Kofané, Phys. Rev. E 90, 032911 (2014)

    Article  ADS  Google Scholar 

  28. J. Fan, S. Jiang, Appl. Math. Lett. 16, 435 (2003)

    Article  MathSciNet  Google Scholar 

  29. G.D. Montesinos, M.I. Rodas-Verde, V.M. Pérez-García, H. Michinel, Chaos 15, 033501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Ankiewicz, N. Akhmediev, N. Devine, Opt. Fiber Technol. 13, 91 (2007)

    Article  ADS  Google Scholar 

  31. P.M. Morse, H. Feshbach, Methods of theoretical physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  32. V. Skarka, N.B. Aleksic, Phys. Rev. Lett. 96, 013903 (2006)

    Article  ADS  Google Scholar 

  33. S. Roy, S.K. Bhadra, G.P. Agrawal, Opt. Commun. 281, 5889 (2008)

    Article  ADS  Google Scholar 

  34. V. Skarka, D.V. Timotijevic, N.B. Aleksic, J. Opt. A Pure Appl. Opt. 10, 075102 (2008)

    Article  ADS  Google Scholar 

  35. M.D. Mboumba, A.B. Moubissi, T.B. Ekogo, G.H. Ben-Bolie, T.C. Kofané, Int. J. Mod. Phys. B 29, 1550202 (2015)

    Article  ADS  Google Scholar 

  36. K. Staliunas, Opt. Commun. 90, 123 (1992)

    Article  ADS  Google Scholar 

  37. S.I. Fewo, C.M. Ngabireng, T.C. Kofané, J. Phys. Soc. 7, 074401 (2008)

    Article  ADS  Google Scholar 

  38. A.I. Maimistov, J. Exp. Theor. Phys. 77, 727 (1993)

    ADS  MathSciNet  Google Scholar 

  39. M. Djoko, T.C. Kofané, Commun. Nonli. Sci. Numer. Simul. 48, 179 (2017)

    Article  Google Scholar 

  40. M. Djoko, T.C. Kofané, Opt. Commun. 416, 190 (2018)

    Article  ADS  Google Scholar 

  41. M. Shen, Q. kong, J. Shi, Q. wang, Phys. Rev. A 77, 015811 (2008)

    Article  ADS  Google Scholar 

  42. G. Zakeri, E. Yomba, Phys. Rev. E 91, 062904 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

A. Djazet would like to thank the CETIC (University of Yaoundé I, Cameroon) for their helpful support. The work by CBT is supported by the Botswana International University of Science and Technology under the Grant DVC/RDI/2/1/16I (25). I thank the Kavli Institute for Theoretical Physics (KITP), University of California Santa Barbara (USA), where this work was supported in part by the National Science Foundation Grant no. NSF PHY-1748958

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad B. Tabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The effective potential obtained for the stability analysis is given by

$$\begin{aligned} \begin{aligned} U =&\left( \left( \left( 5 - \frac{3}{{2{Y^2}}}\right) {X^2} + \frac{{55}}{{336}} + \frac{9}{{224X_m^2}} + \frac{{43}}{{252}}X_m^2\right. \right. \\&\left. \left. - \frac{{\frac{{4X_m^4}}{9} + \frac{{17X_m^2}}{{36}} + \frac{1}{8}}}{{{X^2}}}\right) {\delta _i}{\gamma _i}{A^6} - \frac{1}{2}{A^2}\ln (X)\right) {e^{ - \frac{{14X_m^2}}{{3{X^2}}}}}\\&+ \left( \frac{1}{8}\left( \left( \frac{7}{2} - \frac{1}{{{Y^2}}}\right) {X^2} + \frac{3}{{16X_m^2}} + \frac{7}{9}\right) \right. \\&\left. +\frac{{8X_m^2}}{{81}}- \frac{{\frac{1}{{16}} + \frac{{16}}{{81}}X_m^4 + \frac{{2X_m^2}}{9}}}{{{X^2}}}\right) \delta _i^2{A^8}{e^{ - \frac{{16X_m^2}}{{{X^2}}}}} \\&+ \left( \left( \left( 4 - \frac{1}{{2{Y^2}}}\right) {X^2}+ \frac{{8X_m^2}}{9} + \frac{1}{2}\right) \frac{{\mu {\delta _i}{A^8}}}{9}\right. \\&+ \left( \left( 7 - \frac{1}{{2{Y^2}}}\right) \frac{{{X^2}}}{8} + \frac{{X_m^2}}{9}+ \frac{1}{{16}}\right) \varepsilon {\delta _i}{A^6}\\&+ \left( \left( \frac{\delta }{2} - S + \left( {C^2} - \frac{1}{{2{Y^2}}} + \frac{{16{C^2}X_m^2}}{9}\right. \right. \right. \\&\left. \left. + \frac{4}{3}C\right) \beta \right) {\delta _i}{X^2} + {\delta _i}\left( \frac{2}{3} - \frac{{16CX_m^2}}{9} - C\right) \\&\left. \left. + \beta {\delta _i}\left( \frac{7}{{12}}+\frac{3}{{16X_m^2}} - {C^2}{X^4} - \frac{{\frac{1}{4} + \frac{{4X_m^2}}{9}}}{{{X^2}}}\right) \right) {A^4}\right) {e^{ - \frac{{8X_m^2}}{{3{X^2}}}}}\\&+ \left( \left( \left( \left( 3 - \frac{1}{{{Y^2}}}\right) {X^2} + 1 + X_m^2 + \frac{1}{{4X_m^2}}\right) \right. \right. \\&\left. \left. - \frac{{\frac{1}{4} + X_m^2 + X_m^4}}{{2{X^2}}}\right) \gamma _i^2{A^4}+ \frac{{\beta {\gamma _i}{A^2}}}{2}\right) {e^{ - \frac{{4X_m^2}}{{{X^2}}}}}\\&+ \left( \left( \frac{{11}}{2} - \frac{1}{{{Y^2}}}\right) \frac{{{X^2}}}{{18}} + \frac{{X_m^2}}{9}+ \frac{1}{{18}}\right) \mu {\gamma _i}{A^6}\\&+ \left( \left( 1 - \frac{1}{{32{Y^2}}}\right) \frac{{{X^2}}}{4} + \frac{{X_m^2}}{8} + \frac{1}{{16}}\right) \varepsilon {\gamma _i}{A^4} \\&+ \left( \left( - {C^2}{X^4} + \frac{1}{{8X_m^2}} - \frac{{1 + 2X_m^2}}{{4{X^2}}}\right) \beta {\gamma _i}\right. \\&- {\gamma _i}C(1 +2X_m^2)\\&+ \frac{{{\gamma _r}}}{2} + \left( {\gamma _i}\frac{{\delta - 2S - 2C}}{4}+ \beta {\gamma _i}\left( \frac{C}{2} + 2{C^2}X_m^2\right. \right. \\&\left. \left. \left. + {C^2} + \frac{1}{{4{Y^2}}}\right) \right) {A^2} + \frac{1}{{{X^2}}}\right) {e^{ - \frac{{2X_m^2}}{{{X^2}}}}}\\&+ \left( {X^2}+ {Y^2}\right) \left( \frac{{{\mu ^2}{A^8}}}{9} + \frac{{5\varepsilon \mu {A^6}}}{{24}}\right) \\&+ \left( - \frac{4}{9}\left\{ (\nu + \beta \mu )(\ln (X)+ \ln (Y))+ \beta \mu \left( {C^2}{X^4} + {S^2}{Y^4}\right) \right\} \right. \\&\left. + \frac{{5{\varepsilon ^2}}}{{64}}({X^2} + {Y^2})+ \left( 4\beta C\nu + 2\mu \delta - 4\mu S - \frac{{2\beta \mu }}{{{Y^2}}}\right) \left( \frac{{{X^2}}}{9}\right) \right. \\&\left. + \left( 4\beta S\nu + 2\mu \delta - 4\mu C - \frac{{2\beta \mu }}{{{X^2}}}\right) \left( \frac{{{Y^2}}}{9}\right) \right) {A^4}\\&+ \left( - \frac{{\beta \varepsilon }}{2}({C^2}{X^4}+ {S^2}{Y^4})- (\ln (X) + \ln (Y))\left( \frac{{2 + \beta \varepsilon }}{4}\right) \right. \\&+ \left( - \frac{{\beta \varepsilon }}{{{Y^2}}}+ 2\varepsilon C + 4\delta \varepsilon - 2\varepsilon S\right) \frac{{{X^2}}}{8}\\&+ \left( 4\beta S + 2\varepsilon S - 2\varepsilon C + \delta \varepsilon \right. \\&\left. \left. - \frac{{\beta \varepsilon }}{{{X^2}}}\right) {Y^2}\right) {A^2}\\&- 4{\beta ^2}({C^4}{X^6} + {S^4}{Y^6}) + 4\beta ({S^3}{Y^4} + {C^3}{Y^4}) \\&- 6{\beta ^2}({C^2}{X^2} + {S^2}{Y^2})+ 12\beta \left( S\ln (Y)\right. \\&\left. + C\ln (X)\right) - \frac{{{\beta ^2}}}{4}\left( \frac{1}{{{X^2}}} + \frac{1}{{{Y^2}}}\right) \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djazet, A., Tabi, C.B., Fewo, S.I. et al. Vector dissipative light bullets in optical laser beam. Appl. Phys. B 126, 74 (2020). https://doi.org/10.1007/s00340-020-07422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07422-7

Navigation