Skip to main content
Log in

Quadruple Gaussian laser beam in cubic-quintic nonlinear media: effect of nonlinear absorption

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

An investigation on nonlinear propagation of Quadruple Gaussian (Q.G) laser beams propagating through dissipative media possessing cubic-quintic nonlinearity has been presented. The formulation is based on finding the numerical solution of Ginzburg–Landau equation for the field of incident laser beam followed by moment theory approach in W.K.B approximation. In particular, dynamical variations of beam spot size and longitudinal phase of the laser beam have been investigated in detail. Self-trapping of the laser beam resulting from the balance between diffraction broadening and nonlinear refraction has been also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.H. Maiman, Stimulated optical radiation in Ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. G. Mourou, The ultrahigh-peak-power laser: present and future. Appl. Phys. B 65, 205 (1997)

    Article  ADS  Google Scholar 

  3. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  4. C. Winterfeldt, C. Spielmann, G. Gerber, Optimal control of high-harmonic generation. Rev. Mod. Phys. 80, 117 (2008)

    Article  ADS  Google Scholar 

  5. H.M. Milchberg, C.G. Durfee III., T.J. McIlrath, High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 2494 (1995)

    Article  ADS  Google Scholar 

  6. G.A. Askaryan, Effects of the gradient of strong electromagnetic beam on electrons and atoms. Sov. Phys. JETP 15, 1088 (1962)

    Google Scholar 

  7. M. Karlsson, Optical beams in saturable self-focusing media. Phys. Rev. A 46, 2726 (1992)

    Article  ADS  Google Scholar 

  8. M. Karlsson, D. Anderson, M. Desaix, M. Lisak, Dynamic effects of Kerr nonlinearity and spatial diffraction on self-phase modulation of optical pulses. Opt. Lett. 16, 1373 (1991)

    Article  ADS  Google Scholar 

  9. A.W. Snyder, D.J. Mitchell, L. Poladian, F. Ladouceur, Self-induced optical fibers: spatial solitary waves. Opt. Lett. 16, 21 (1991)

    Article  ADS  Google Scholar 

  10. S. Jana, A. Singh, K. Porsezian, T. Mithun, Self-trapped elliptical super-Gaussian beam in cubic-quintic media. Opt. Commun. 332, 311 (2014)

    Article  ADS  Google Scholar 

  11. G.I. Stegeman, M. Segev, Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518 (1999)

    Article  Google Scholar 

  12. G. Stix, The undying pulse. Sci. Am. 285, 30 (2001)

    Article  Google Scholar 

  13. A.E. Siegman, Lasers, University Science Books (1986)

  14. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1965)

    Article  ADS  Google Scholar 

  15. Y. Chen, Self-trapped light in saturable nonlinear media. Opt. Lett. 16, 4 (1991)

    Article  ADS  Google Scholar 

  16. L.G. Gouy, Sur une propriete nouvelle des ondes lumineuses, C. R. Acad. Sci. Paris Ser. IV 110, 1251 (1890)

    Google Scholar 

  17. R.W. Boyd, Intuitive explanation of the phase anomaly of focused light beams. J. Opt. Soc. Am. 70, 877 (1980)

    Article  ADS  Google Scholar 

  18. S. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

  19. P. Hariharan, P.A. Robinson, The gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219 (1996)

    ADS  MathSciNet  Google Scholar 

  20. J. Yang, H.G. Winful, Generalized eikonal treatment of the Gouy phase shift. Opt. Lett. 31, 104 (2006)

    Article  ADS  Google Scholar 

  21. J.L. Coutaz, M. Kull, Saturation of the nonlinear index of refraction in semiconductor-doped glass. J. Opt. Soc. Am. B 8, 95 (1991)

    Article  ADS  Google Scholar 

  22. P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, New results on optical phase conjugation in semiconductor-doped glasses. J. Opt. Soc. Am. B 4, 5 (1987)

    Article  ADS  Google Scholar 

  23. Z. Jovanoski, D.R. Rowland, Variational analysis of solitary waves in a homogeneous cubic-quintic nonlinear medium. J. Mod. Opt. 48, 1179 (2001)

    Article  ADS  Google Scholar 

  24. S. Gatz, J. Herrmann, Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt. Lett. 17, 484 (1992)

    Article  ADS  Google Scholar 

  25. G.I. Stegeman, R.H. Stolen, Waveguides and fibers for nonlinear optics. J. Opt. Soc. Am. B 6, 652 (1989)

    Article  ADS  Google Scholar 

  26. S. Tanev, D.I. Pushkarov, Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides. Opt. Commun. 141, 322 (1997)

    Article  ADS  Google Scholar 

  27. D. Pushkarov, S. Tanev, Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354 (1996)

    Article  ADS  Google Scholar 

  28. A. Biswas, Quasi-stationary optical solitons with parabolic law nonlinearity. Opt. Commun. 216, 427 (2003)

    Article  ADS  Google Scholar 

  29. P.L. Kelley, Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005 (1965)

    Article  ADS  Google Scholar 

  30. R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592 (1970)

    Article  ADS  Google Scholar 

  31. T.K. Gustafson, J.P. Taran, H.A. Haus, J.R. Lifsitz, P.L. Kelley, Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Phys. Rev. 177, 306 (1969)

    Article  ADS  Google Scholar 

  32. J.T. Manassah, P.L. Baldeck, R.R. Alfano, Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt. Lett. 13, 589 (1988)

    Article  ADS  Google Scholar 

  33. M. Karlsson, D. Anderson, M. Desaix, Dynamics of self-focusing and self-phase modulation in a parabolic index optical fiber. Opt. Lett. 17, 22 (1992)

    Article  ADS  Google Scholar 

  34. M. Habibi, F. Ghamari, Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile. Phys. Plasmas 19, 113109 (2012)

    Article  ADS  Google Scholar 

  35. M. Habibi, F. Ghamari, Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile. Phys. Plasmas 19, 103110 (2012)

    Article  ADS  Google Scholar 

  36. D.N. Gupta, M.S. Hur, H. Suk, Additional focusing of a high-intensity laser beam in a plasma with a density ramp and a magnetic field. Appl. Phys. Lett. 91, 081505 (2007)

    Article  ADS  Google Scholar 

  37. N. Gupta, A. Singh, Effect of cross-focusing of two q-Gaussian laser beams on excitation of electron plasma wave in collisional plasma. Optik 127, 8542 (2016)

    Article  ADS  Google Scholar 

  38. A. Singh, N. Gupta, Second harmonic generation by self focused q-Gaussian laser beam in preformed collisional parabolic plasma channel. Optik 127, 2432 (2016)

    Article  ADS  Google Scholar 

  39. N. Singh, N. Gupta, A. Singh, Second harmonic generation of Cosh–Gaussian laser beam in collisional plasma with nonlinear absorption. Opt. Commun. 381, 180 (2016)

    Article  ADS  Google Scholar 

  40. A. Singh, N. Gupta, Second harmonic generation of self-focused Cosh–Gaussian laser beam in collisional plasma. Optik 127, 5452 (2016)

    Article  ADS  Google Scholar 

  41. P. Sati, A. Sharma, V.K. Tripathi, Self focusing of a quadruple Gaussian laser beam in a plasma. Phys. Plasmas 19, 092117 (2012)

    Article  ADS  Google Scholar 

  42. M. Moshkelgosha, Controlling the self-focusing of quadruple Gaussian beam in plasma. IEEE Trans. Plasma Sci. 44, 894 (2016)

    Article  ADS  Google Scholar 

  43. I.S. Aranson, L. Kramer, The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  44. E.A. Ultanir, G.I. Stegeman, D. Michaelis, C.H. Lange, F. Lederer, Stable dissipative solitons in semiconductor optical amplifiers. Phys. Rev. Lett. 90, 253903 (2003)

    Article  ADS  Google Scholar 

  45. E.A. Ultanir, G.I. Stegeman, C.H. Lange, F. Lederer, Coherent interactions of dissipative spatial solitons. Opt. Lett. 29, 283 (2004)

    Article  ADS  Google Scholar 

  46. A. Ankiewicz, N. Devine, N. Akhmediev, J.M. Soto-Crespo, Continuously self-focusing and continuously self-defocusing two-dimensional beams in dissipative media. Phys. Rev. A 77, 033840 (2008)

    Article  ADS  Google Scholar 

  47. B.L. Lawrence, M. Cha, W.E. Torruellas, G.I. Stegeman, Measurement of the complex nonlinear refractive index of single crystal p-toluene sulfonate at 1064 \(nm\). Appl. Phys. Lett. 64, 2773 (1994)

    Article  ADS  Google Scholar 

  48. J.F. Lam, B. Lippmann, F. Tappert, Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15, 419 (1975)

    Article  ADS  Google Scholar 

  49. J.F. Lam, B. Lippmann, F. Tappert, Self-trapped laser beams in plasma. Phys. Fluids 20, 1176 (1977)

    Article  ADS  Google Scholar 

  50. N. Gupta, N. Singh, A. Singh, Second harmonic generation of \(q\)-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption. Phys. Plasmas 22, 113106 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, S., Choudhry, S. et al. Quadruple Gaussian laser beam in cubic-quintic nonlinear media: effect of nonlinear absorption. J Opt (2024). https://doi.org/10.1007/s12596-023-01531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01531-0

Keywords

Navigation