Skip to main content
Log in

Cross-band infrared laser absorption of carbon monoxide for thermometry and species sensing in high-pressure rocket flows

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel cross-band laser absorption spectroscopy technique has been developed for quantitative measurements of gas temperature and carbon monoxide (CO) in high-pressure, high-temperature rocket combustion flows. The strategy enables a broad range of sensor operability by simultaneously probing rovibrational transitions in both the fundamental and first overtone bands of CO near \(4.98\,\upmu \hbox {m}\) and \(2.32\,\upmu \hbox {m}\), respectively, which sustain large differences in temperature dependence despite collisional broadening. Scanned-wavelength modulation spectroscopy methods are integrated for noise rejection in the harsh rocket operating environment. Initial experiments using the cross-band thermometry technique have been conducted on a single-element-injector rocket combustor with RP-2/GOx and \({\hbox {CH}_4}/\hbox {GOx}\) propellant combinations at pressures up to 75 bar. Measurements of the first overtone bandhead (\(2.32\,\upmu \hbox {m}\)) maintained adequate signal-to-noise at even higher pressures (up to 105 bar), although deviating significantly from spectral simulations. To account for collisional effects at high gas densities, empirical models for line mixing, developed via shock tube studies, were employed to enable quantitative interpretation of measured signals for temperature and CO mole fraction in the rocket combustor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Paez. SpaceX’s Starship Engine Shattered a Long-Standing Russian Rocket Record (2019)

  2. P.G. Hill, C.R. Peterson, Mechanics and Thermodynamics of Propulsion, 2nd edn. (Addison-Wesley Publishing Co, Reading, MA, 1992)

    Google Scholar 

  3. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132–176 (2017)

    Article  Google Scholar 

  4. A.W. Caswell, S.T. Sanders, M.J. Chiaverini. Swept-wavelength laser absorption tomography for imaging rocket plume gas properties, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2005)

  5. A.S. Makowiecki, T.R. Hayden, M.R. Nakles, N.H. Pilgram, N.A. MacDonald, W.A. Hargus, G.B. Rieker. Wavelength modulation spectroscopy for measurements of temperature and species concentration downstream from a supersonic nozzle, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference (2017)

  6. J. Locke, S. Pal, R. Woodward, R. Santoro. Diode laser absorption spectroscopy measurements in a gaseous hydrogen/oxygen rocket, in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011)

  7. H. Zeng, F. Li, X. Yu, D. Ou, L. Chen, Appl. Opt. 57, 1321–1330 (2018)

    Article  ADS  Google Scholar 

  8. D.D. Lee, F.A. Bendana, S.A. Schumaker, R.M. Spearrin, Appl. Phys. B 124, 77 (2018)

    Article  ADS  Google Scholar 

  9. D.D. Lee, F.A. Bendana, R.M. Spearrin. Laser absorption spectroscopy of carbon monoxide near 4.97 \(\mu\)m for temperature and species measurements in hydrocarbon-fueled rockets, in 2018 AIAA Aerospace Sciences Meeting (2018)

  10. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, Berlin, 2016)

    Book  Google Scholar 

  11. U. Fano, Phys. Rev. 131, 259–268 (1963)

    Article  ADS  Google Scholar 

  12. F.A. Bendana, D.D. Lee, C. Wei, D.I. Pineda, R.M. Spearrin. J. Quant. Spectrosc. Radiat. Transf. 239, 106636 (2019)

  13. F. Niro, C. Boulet, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 88, 483–498 (2004)

    Article  ADS  Google Scholar 

  14. R. Rodrigues, C. Boulet, L. Bonamy, J.M. Hartmann, J. Chem. Phys. 109, 3037–3047 (1998)

    Article  ADS  Google Scholar 

  15. J.M. Hartmann, L. Rosenmann, M.Y. Perrin, J. Taine, Appl. Opt. 27, 3063–3065 (1988)

    Article  ADS  Google Scholar 

  16. J. Boissoles, C. Boulet, D. Robert, S. Green, J. Chem. Phys. 90, 5392–5398 (1989)

    Article  ADS  Google Scholar 

  17. M.L. Koszykowski, L.A. Rahn, R.E. Palmer, M.E. Coltrin, J. Phys. Chem. 91, 41–46 (1987)

    Article  Google Scholar 

  18. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, 2nd edn. (Wiley, New York, 1964)

    MATH  Google Scholar 

  19. A. Ben-Reuven, Phys. Rev. 145, 7–22 (1966)

    Article  ADS  Google Scholar 

  20. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546–5560 (2009)

    Article  ADS  Google Scholar 

  21. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052–1061 (2006)

    Article  ADS  Google Scholar 

  22. K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24, 125203 (2013)

    Article  ADS  Google Scholar 

  23. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53, 1938–1946 (2014)

    Article  ADS  Google Scholar 

  24. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Appl. Phys. B Lasers Opt. 116, 855–865 (2014)

    Article  ADS  Google Scholar 

  25. L.H. Ma, L.Y. Lau, W. Ren, Appl. Phys. B Lasers Opt. 123, 1–9 (2017)

    Article  ADS  Google Scholar 

  26. K.-P. Cheong, L. Ma, Z. Wang, W. Ren, Appl. Spectrosc. 73, 529–539 (2019)

    Article  ADS  Google Scholar 

  27. J.M. Kriesel, N. Gat, B.E. Bernacki, R.L. Erikson, B.D. Cannon, T.L. Myers, C.M. Bledt, J.A. Harrington. Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy, in Proceedings of SPIE—The International Society for Optical Engineering (2011)

  28. R.M. Spearrin, C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 117, 689-698 (2014) 

    Article  Google Scholar 

  29. E.B. Coy. A method for eliminating beam steering error for the modulated absorption-emission thermometry technique, in 53rd AIAA Aerospace Sciences Meeting (2015)

  30. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  31. J.M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra (Elsevier, New York, 2008)

    Google Scholar 

  32. B.J. McBride, S. Gordon, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications (NASA, Cleveland, 1996)

    Google Scholar 

  33. D. Romanini, K.K. Lehmann, J. Chem. Phys. 105, 81–88 (1996)

    Article  ADS  Google Scholar 

  34. A.S. Pine, J.P. Looney, J. Chem. Phys. 96, 1704–1714 (1992)

    Article  ADS  Google Scholar 

  35. J.P. Looney, G.J. Rosasco, L.A. Rahn, W.S. Hurst, J.W. Hahn, Chem. Phys. Lett. 161, 232–238 (1989)

    Article  ADS  Google Scholar 

  36. T. Dreier, G. Schiff, A.A. Suvernev, J. Chem. Phys. 100, 6275–6289 (1994)

    Article  ADS  Google Scholar 

  37. J. Bonamy, L. Bonamy, D. Robert, M.L. Gonze, G. Millot, B. Lavorel, H. Berger, J. Chem. Phys. 94, 6584–6589 (1991)

    Article  ADS  Google Scholar 

  38. F. Beyrau, A. Datta, T. Seeger, A. Leipertz, J. Raman Spectrosc. 33, 919–924 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Air Force Research Laboratory under Award No. 16-EPA-RQ-09. The authors would like to thank Anil P. Nair for assistance in conducting \(\hbox {CH}_{4}/\hbox {GOx}\) experiments, Dr. William A. Hargus and Dr. John W. Bennewitz for help in setting up the data acquisition system, and Dr. Daniel I. Pineda and Chuyu Wei for ongoing support in developing the line-mixing model. The fundamental spectroscopy work is partially supported by the U.S. National Science Foundation, Award No. 1752516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio A. Bendana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendana, F.A., Lee, D.D., Schumaker, S.A. et al. Cross-band infrared laser absorption of carbon monoxide for thermometry and species sensing in high-pressure rocket flows. Appl. Phys. B 125, 204 (2019). https://doi.org/10.1007/s00340-019-7320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7320-y

Navigation