Skip to main content
Log in

An image-based computational modeling approach for prediction of temperature distribution during photothermal therapy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Nanoparticle-assisted photothermal therapy (NPTT) has recently renewed the interest of using hyperthermia in cancer therapy due to selective heating of tumor by utilizing light-responsive nanoparticles such as gold nanoparticles (AuNPs). Pre-treatment planning of NPTT can help to predict temperature distribution within the body in order to optimize the treatment parameters before the actual heating operation. The use of actual tumor geometry and nanoparticle distribution are key requirements for accurate prediction of temperature distribution during numerical calculations of the heat transfer process. This study attempts to develop a numerical modeling strategy for NPTT based on computed tomography (CT) imaging. To this end, CT26 colon tumor-bearing mice were injected with alginate-coated AuNPs (Au@Alg) and then underwent CT imaging. The tumor geometry and nanoparticle distribution map were obtained directly from CT image of the tumor and exported into a finite element simulation software for subsequent heat transfer modeling. The predicted temperature of the tumor from numerical modeling was found to be in reasonable agreement with the measured data from in vivo thermometry. This model has the potential to be used as a pre-treatment planning tool to design an individualized heating protocol for various tumor geometry before the actual heating treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Ref. [9]. Copyright 2019 Elsevier

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.J. Moeller, R.A. Richardson, M.W. Dewhirst, Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 26(2), 241–248 (2007)

    Article  Google Scholar 

  2. J.D. Meier, D.A. Oliver, M.A. Varvares, Surgical margin determination in head and neck oncology: current clinical practice. The results of an International American Head and Neck Society Member Survey. Head Neck 27(11), 952–958 (2005)

    Article  Google Scholar 

  3. M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2(1), 48–58 (2002)

    Article  Google Scholar 

  4. J. van der Zee, Heating the patient: a promising approach? Ann. Oncol. 13(8), 1173–1184 (2002)

    Article  Google Scholar 

  5. M. Hurwitz, P. Stauffer, Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin. Oncol. 41, 714–729 (2014)

    Article  Google Scholar 

  6. J. Beik, M. Khateri, Z. Khosravi, S.K. Kamrava, S. Kooranifar, H. Ghaznavi et al., Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 387, 299–324 (2019)

    Article  Google Scholar 

  7. J. Beik, M.B. Shiran, Z. Abed, I. Shiri, A. Ghadimi-Daresajini, F. Farkhondeh et al., Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med. Phys. 45(9), 4306–4314 (2018)

    Article  Google Scholar 

  8. A. Montazerabadi, J. Beik, R. Irajirad, N. Attaran, S. Khaledi, H. Ghaznavi et al., Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif. Cells Nanomed. Biotechnol. 47(1), 330–340 (2019)

    Article  Google Scholar 

  9. M. Mirrahimi, Z. Abed, J. Beik, I. Shiri, A.S. Dezfuli, V.P. Mahabadi et al., A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol. Res. 143, 178–185 (2019)

    Article  Google Scholar 

  10. Z. Alamzadeh, J. Beik, V.P. Mahabadi, A.A. Ardekani, A. Ghader, S.K. Kamrava et al., Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method. J. Photochem. Photobiol. B 192, 19–25 (2019)

    Article  Google Scholar 

  11. N. Manuchehrabadi, Z. Gao, J. Zhang, H.L. Ring, Q. Shao, F. Liu et al., Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9(379), 4586 (2017)

    Article  Google Scholar 

  12. S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35(3), 209–217 (2006)

    Article  Google Scholar 

  13. N. Manuchehrabadi, L. Zhu, Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int. J. Hyperth. 30(6), 349–361 (2014)

    Article  Google Scholar 

  14. J. Mesicek, K. Kuca, Summary of numerical analyses for therapeutic uses of laser-activated gold nanoparticles. Int. J. Hyperth. 34, 1–10 (2018)

    Article  Google Scholar 

  15. J. Wiersma, N. Van Wieringen, H. Crezee, J. Van Dijk, Delineation of potential hot spots for hyperthermia treatment planning optimisation. Int. J. Hyperth. 23(3), 287–301 (2007)

    Article  Google Scholar 

  16. M.W. Dewhirst, J. Abraham, B. Viglianti, Evolution of thermal dosimetry for application of hyperthermia to treat cancer. Adv. Heat Transf. 47, 397–421 (2015)

    Article  Google Scholar 

  17. G. von Maltzahn, J.-H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Can. Res. 69(9), 3892–3900 (2009)

    Article  Google Scholar 

  18. N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, L. Zhu, Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy. J. Biomech. Eng. 135(12), 121007 (2013)

    Article  Google Scholar 

  19. J. Beik, M. Jafariyan, A. Montazerabadi, A. Ghadimi-Daresajini, P. Tarighi, A. Mahmoudabadi et al., The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement. Artif. Cells Nanomed. Biotechnol. 46, 1–9 (2017)

    Article  Google Scholar 

  20. M. Mirrahimi, M. Khateri, J. Beik, F.S. Ghoreishi, A.S. Dezfuli, H. Ghaznavi et al., Enhancement of chemoradiation by co-incorporation of gold nanoparticles and cisplatin into alginate hydrogel. J. Biomed. Mater. Res. Part B Appl. Biomater. 107B, 2658–2663 (2019)

    Article  Google Scholar 

  21. M.N. Iizuka, I.A. Vitkin, M.C. Kolios, M.D. Sherar, The effects of dynamic optical properties during interstitial laser photocoagulation. Phys. Med. Biol. 45(5), 1335 (2000)

    Article  Google Scholar 

  22. S.K. Cheong, S. Krishnan, S.H. Cho, Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med. Phys. 36(10), 4664–4671 (2009)

    Article  Google Scholar 

  23. N. Manuchehrabadi, L. Zhu, Gold nanoparticle-based laser photothermal therapy. In: Handbook of Thermal Science and Engineering, ed. by F. Kulacki. Springer, Cham

  24. Y. Ren, H. Qi, Q. Chen, L. Ruan, Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy. Int. J. Heat Mass Transf. 106, 212–221 (2017)

    Article  Google Scholar 

  25. Y. Feng, M. Rylander, J. Bass, J. Oden, K. Diller, Optimal design of laser surgery for cancer treatment through nanoparticle-mediated hyperthermia therapy. NSTI-Nanotech 1, 39–42 (2005)

    Google Scholar 

  26. H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)

    Article  ADS  Google Scholar 

  27. S. Soni, H. Tyagi, R.A. Taylor, A. Kumar, Experimental and numerical investigation of heat confinement during nanoparticle-assisted thermal therapy. Int. Commun. Heat Mass Transf. 69, 11–17 (2015)

    Article  Google Scholar 

  28. A.R. Melo, M.M.S. Loureiro, F. Loureiro, Blood perfusion parameter estimation in tumors by means of a genetic algorithm. Procedia Comput. Sci. 108, 1384–1393 (2017)

    Article  Google Scholar 

  29. S.A. Sapareto, W.C. Dewey, Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984)

    Article  Google Scholar 

  30. S.A. Sapareto, The biology of hyperthermia in vitro. In: Physical aspects of hyperthermia, ed. by G.H. Nussbaum. New York, NY: American Institute of Physics, pp. 1–16 (1982)

  31. S.A. Sapareto, L.E. Hopwood, W.C. Dewey, M.R. Raju, J.W. Gray, Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Can. Res. 38(2), 393–400 (1978)

    Google Scholar 

  32. W.C. Dewey, Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperth. 10(4), 457–483 (1994)

    Article  MathSciNet  Google Scholar 

  33. J. Beik, M. Asadi, S. Khoei, S. Laurent, Z. Abed, M. Mirrahimi et al., Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. J. Photochem. Photobiol. B Biol. 199, 111599 (2019)

    Article  Google Scholar 

  34. J. van der Zee, J.N. Peer-Valstar, P.J. Rietveld, L. de Graaf-Strukowska, G.C. van Rhoon, Practical limitations of interstitial thermometry during deep hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 40(5), 1205–1212 (1998)

    Article  Google Scholar 

  35. G.C. Van Rhoon, P. Wust, Introduction: non-invasive thermometry for thermotherapy. Int. J. Hyperth. 21(6), 489–495 (2005)

    Article  Google Scholar 

  36. S. Bhowmick, D.J. Swanlund, J.C. Bischof, Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells. J. Biomech. Eng. 122(1), 51–59 (2000)

    Article  Google Scholar 

Download references

Funding

Funding was provided by Zahedan University of Medical Sciences (Grant no. 7970).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Habib Ghaznavi or Ali Shakeri-Zadeh.

Ethics declarations

Conflict of interest

Nothing to be reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beik, J., Asadi, M., Mirrahimi, M. et al. An image-based computational modeling approach for prediction of temperature distribution during photothermal therapy. Appl. Phys. B 125, 213 (2019). https://doi.org/10.1007/s00340-019-7316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7316-7

Navigation