Skip to main content
Log in

Spectral characteristic based on sectorial-ring cavity resonator coupled to plasmonic waveguide

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose and investigate left- or right-handed sectorial-ring cavity resonator coupled to metal-insulator-metal plasmonic waveguide. This resonator has the advantages of realizing simple, compact, asymmetrical, multiple, and controllable or tunable cavity, which is a novel plasmonic nanofilter or nanosensor. According to the two-dimensional simulation, the results indicate that the left- or right-handed resonator is the identical effect, and two resonance modes appear in the transmission spectrum of the novel system. When the refractive index (n) of the dielectric, the width (ws) and center arc length (lC) (namely central angle (θ), outer radius (R) and inner radius (r)) of the cavity, and the gap distance (g) between cavity and waveguide are fixed and unfixed, the transmission spectrum is highly controlled with various θ, R and r, and tuned by adjusting the n, (R − r), θ, (R + r) or g, respectively. The coupled mode theory is employed to elucidate the spectral characteristic, which is in good agreement with the numerical simulation. It provides a promising way for realization of controllable or tunable transmission spectrum and for optimization of prospective structure size, and has potential application in nanoscale optical devices and integrated optics devices. It demonstrates a practical approach to design optical devices, which will satisfy different fabricating demands in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004)

    Article  ADS  Google Scholar 

  2. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  3. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)

    Article  ADS  Google Scholar 

  4. D.F.P. Pile, T. Ogawa, D.K. Gramotnev, Y. Matsuzaki, K.C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, M. Fukui, Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005)

    Article  ADS  Google Scholar 

  5. G. Veronis, S.H. Fan, Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol. 25, 2511–2521 (2007)

    Article  ADS  Google Scholar 

  6. W. Cai, W. Shin, S. Fan, M.L. Brongersma, Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv. Mater. 22, 5120–5124 (2010)

    Article  Google Scholar 

  7. Z. He, H. Li, S. Zhan, B. Li, Z. Chen, H. Xu, π-Network transmission line model for plasmonic waveguides with cavity structures. Plasmonics 10, 1581–1585 (2015)

    Article  Google Scholar 

  8. Z. Chen, H. Li, S. Zhan, B. Li, Z. He, H. Xu, M. Zheng, Tunable high quality factor in two multimode plasmonic stubs waveguide. Sci. Rep. 6, 24446 (2016)

    Article  ADS  Google Scholar 

  9. K. Tanaka, M. Tanaka, T. Sugiyama, Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt. Express 13, 256–266 (2005)

    Article  ADS  Google Scholar 

  10. L. Liu, Z. Han, S. He, Novel surface plasmon waveguide for high integration. Opt. Express 13, 6645–6650 (2005)

    Article  ADS  Google Scholar 

  11. B. Li, H. Li, L. Zeng, S. Zhan, Z. He, Z. Chen, H. Xu, Theoretical analysis and applications in inverse T-shape structure. J. Opt. Soc. Am. A 33, 811–816 (2016)

    Article  ADS  Google Scholar 

  12. Z. He, H. Li, B. Li, Z. Chen, H. Xu, M. Zheng, Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub. Opt. Lett. 41, 5206–5209 (2016)

    Article  ADS  Google Scholar 

  13. Z. Chen, H. Li, Z. He, H. Xu, M. Zheng, M. Zhao, Multiple plasmon-induced transparency effects in a multimode-cavity-coupled metal-dielectric-metal waveguide. Appl. Phys. Express 10, 092201 (2017)

    Article  ADS  Google Scholar 

  14. M. Zheng, H. Li, H. Xu, Z. He, Z. Chen, M. Zhao, Filtering property based on ultra-wide stopband in double sector/sectorial-ring stub resonator coupled to plasmonic waveguide. IEEE Photon. J. 9, 2201308 (2017)

    Google Scholar 

  15. M. Zhao, H. Li, Z. He, Z. Chen, H. Xu, M. Zheng, Novel oscillator model with damping factor for plasmon induced transparency in waveguide systems. Sci. Rep. 7, 10635 (2017)

    Article  ADS  Google Scholar 

  16. Q. Zhang, X. Huang, X. Lin, J. Tao, X. Jin, A subwavelength coupler-type MIM optical filter. Opt. Express 17, 7549–7554 (2009)

    Article  ADS  Google Scholar 

  17. B. Yun, G. Hu, Y. Cui, Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8, 267–275 (2013)

    Article  Google Scholar 

  18. H. Lu, X. Liu, Y. Gong, L. Wang, D. Mao, Multi-channel plasmonic waveguide filters with disk-shaped nanocavities. Opt. Commun. 284, 2613–2616 (2011)

    Article  ADS  Google Scholar 

  19. Z. Han, Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides. Photonics Nanostruct. 8, 172–176 (2010)

    Article  ADS  Google Scholar 

  20. A. Hosseini, Y. Massoud, Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90, 181102 (2007)

    Article  ADS  Google Scholar 

  21. X. Peng, H. Li, C. Wu, G. Cao, Z. Liu, Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013)

    Article  ADS  Google Scholar 

  22. T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux, Dielectric-loaded plasmonic waveguide-ring resonators. Opt. Express 17, 2968–2975 (2009)

    Article  ADS  Google Scholar 

  23. A.W. Clark, A.K. Sheridan, A. Glidle, D.R.S. Cumming, J.M. Cooper, Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl. Phys. Lett. 91, 093109 (2007)

    Article  ADS  Google Scholar 

  24. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985)

    Google Scholar 

  25. H.A. Haus, Waves and Fields in Optoelectronics. (Prentice-Hall, Upper Saddle River, 1984)

    Google Scholar 

  26. S. Zhan, H. Li, G. Cao, Z. He, B. Li, H. Xu, Theoretical analysis and applications on nano-block loaded rectangular ring. J. Opt. Soc. Am. A 31, 2263–2267 (2014)

    Article  ADS  Google Scholar 

  27. Z.F. Yu, G. Veronis, S.H. Fan, M.L. Brongersma, Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92, 041117 (2008)

    Article  ADS  Google Scholar 

  28. M. Zheng, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, Tunable and selective transmission based on multiple resonance modes in side-coupled sectorial-ring cavity waveguide. Plasmonics. https://doi.org/10.1007/s11468-018-0817-0

  29. M. Zheng, H. Li, Z. Chen, H. Xu, M. Zhao, C. Xiong, Transmission performance based on plasmonic waveguide coupled with sectorial-ring stub resonator. IEEE Photonics Technol. Lett. 30, 415–418 (2018)

    Article  ADS  Google Scholar 

  30. S.I. Bozhevolnyi, J. Jung, Scaling for gap plasmon based waveguides. Opt. Express 16, 2676–2684 (2008)

    Article  ADS  Google Scholar 

  31. S. Zhan, H. Li, G. Cao, Z. He, B. Li, H. Yang, Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D 47, 205101 (2014)

    Article  ADS  Google Scholar 

  32. M. Zheng, H. Li, Z. Chen, Z. He, H. Xu, M. Zhao, Compact and multiple plasmonic nanofilter based on ultra-broad stopband in partitioned semicircle or semiring stub waveguide. Opt. Commun. 402, 47–51 (2017)

    Article  ADS  Google Scholar 

  33. Y. Fan, N. Shen, T. Koschny, C.M. Soukoulis, Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2, 151–156 (2015)

    Article  Google Scholar 

  34. Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, C.M. Soukoulis, Electrically tunable Goos-Hanchen effect with graphene in the terahertz regime. Adv. Opt. Mater. 4, 1824–1828 (2016)

    Article  Google Scholar 

  35. Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, C.M. Soukoulis, Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resognances. ACS Photonics 5, 1612–1618 (2018)

    Article  Google Scholar 

  36. W. Zhu, R. Yang, Y. Fan, Q. Fu, H. Wu, P. Zhang, N. Shen, F. Zhang, Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. Nanoscale 10, 12054–12061 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant no. 61275174 and the Postgraduate Technology Innovation Project of Central South University under Grant no. 2017zzts062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Zhao, M., Xiong, C. et al. Spectral characteristic based on sectorial-ring cavity resonator coupled to plasmonic waveguide. Appl. Phys. B 125, 53 (2019). https://doi.org/10.1007/s00340-019-7164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7164-5

Navigation