Skip to main content
Log in

Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Silicon-based plasmon detector is a key component in designing CMOS-compatible integrated plasmonic circuits. Internal-photoemission plasmonic detectors in metal–semiconductor–metal (MSM) structure are promising devices for this purpose, because of their ability to detect infrared wavelengths. In this paper, a balanced MSM-integrated plasmon detector device is proposed to isolate the output from dark current. Performance characteristics of the new device are numerically simulated. In a specific bias point (V = 3 V), the output current is 3.18 × 10−5 A, responsivity is 0.1288 A/W, SNR is 21.7 dB and area is about 2 µm2. Simulation results for this balanced plasmon detector, in comparison with experimental results of previous single-MSM device, demonstrate considerable dark current reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Stanley, Plasmonics in the mid-infrared. Nat. Photonics 6, 409–411 (2012)

    Article  ADS  Google Scholar 

  2. M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)

    Article  ADS  Google Scholar 

  3. P. Berini, Surface plasmon photodetectors and their applications. Laser Photonics Rev. (2013). https://doi.org/10.1002/lpor.201300019

    Article  Google Scholar 

  4. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  5. A. Akbari, R.N. Tait, P. Berini, Surface plasmon waveguide Schottky detector. Opt. Express 18, 8505–8514 (2010)

    Article  ADS  Google Scholar 

  6. S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, M. Kohl, Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception. Optica Opt. Soc. Am. 3(7), 741–747 (2016)

    Google Scholar 

  7. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, Waveguide-based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20(28602), 28594 (2012)

    Article  ADS  Google Scholar 

  8. A. Akbari, A. Olivieri, Berini, Sub-bandgap asymmetric surface plasmon waveguide Schottky detectors on silicon. IEEE J. Sel. Top. Quantum Electron. 19, 4600209 (2013)

    Article  ADS  Google Scholar 

  9. S.R.J. Brueck, V. Diadiuk, T. Jones, W. Lenth, Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves. Appl. Phys. Lett. 46, 915–917 (1985)

    Article  ADS  Google Scholar 

  10. J. Rosenburg, R.V. Shenoi, T.E. Vandervelde, S. Krishna, O. Painter, A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl. Phys. Lett. 95, 161101 (2009)

    Article  ADS  Google Scholar 

  11. M. Alavirad, A. Olivieri, L. Roy, P. Berini, High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt. Express 24, 22544–22554 (2016)

    Article  ADS  Google Scholar 

  12. A.M. Livani, H. Kaatuzian, Design and simulation of an electrically pumped Schottky junction based plasmonic amplifier. Appl. Opt. 54(9), 2164–2173 (2015)

    Article  ADS  Google Scholar 

  13. R. Sundararaman, P. Narang, A.S. Jermyn, W.A. William, H.A. Harry, Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. (2014). https://doi.org/10.1038/ncomms6788

    Article  Google Scholar 

  14. M. Bernardi, J. Mustafa, J.B. Neaton, S.G. Louie, Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. (2015). https://doi.org/10.1038/ncomms8044

    Article  Google Scholar 

  15. R.G. Forbes, J.H.B. Deane, Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. R Soc. A 467, 2927–2947 (2011)

    Article  ADS  Google Scholar 

  16. C. Scales, P. Berini, Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46(5), 633–643 (2010)

    Article  ADS  Google Scholar 

  17. J. Singh, Semiconductor Devices: Basic Principles (Wiley, Hoboken, 2000) (Chap. 6)

    Google Scholar 

  18. M. Cowley, Titanium-silicon Schottky barrier diodes. Solid State Electron. 13, 403–414 (1970)

    Article  ADS  Google Scholar 

  19. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Book  Google Scholar 

  20. B. Ung, Y. Sheng, Interference of surface waves in a metallic nanoslit. Opt. Express 15, 1182–1190 (2007)

    Article  ADS  Google Scholar 

  21. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience Publication, Hoboken, 1981) (Chap. 5)

    Google Scholar 

  22. K. Matsuzawa, K. Uchida, A. Nishiyama, A unified simulation of Schottky and ohmic contacts. IEEE Trans. Electron Devices, 47(1), 103–108 (2000)

    Article  ADS  Google Scholar 

  23. Silvaco Inc. Atlas user’s manual [online] (2013). http://www.silvaco.com/

  24. R. Nouchi, Extraction of the Schottky parameters in metal-semiconductor-metal diodes from a single current-voltage measurement. J. Appl. Phys. 116, 184505 (2014). https://doi.org/10.1063/1.4901467

    Article  Google Scholar 

  25. A. Klyukanov, P.A. Gashin, R. Scurtu, Ideality factor in transport theory of Schottky barrier diodes (2012). arXiv:1204.0335

  26. H. Rhoderick, R.H. Williams, Metal–Semiconductor Contacts, 2nd edn. (Oxford University Press, Oxford, 1988)

    Google Scholar 

  27. R. Kim, M. Lundstrom, Notes on Fermi–Dirac integrals (2008). arXiv:0811.0116

  28. A. Beling et al., Monolithically integrated balanced photodetector and its application in OTDM 160 Gbit/s DPSK transmission. Electron. Lett. 39(16) 1204–1205 (2003). https://doi.org/10.1049/el:20030787

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Kaatuzian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegar Pashaki, E., Kaatuzian, H., Mallah Livani, A. et al. Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector. Appl. Phys. B 125, 2 (2019). https://doi.org/10.1007/s00340-018-7111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7111-x

Navigation