Skip to main content
Log in

Reynolds number and diffusion coefficient of micro- and nano-aerosols in optical pipelines

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, the microscopic particle motion inside an optical pipeline, such as particle motion through a mechanical tube, is investigated. The photons in an optical tube guide the particles towards the center of the light beam by inducing photophoretic and radiation pressure forces. Laguerre–Gaussian- and Bessel-like beams are examples of such optical tubes. The Reynolds number of particle motion in optical tubes is investigated. The power of the light beam and the ratio of the particle radius to the light beam ring radius influence the turbulence of the particle flow and the value of the Reynolds number. The diffusion coefficient of particle movement in such pipelines is derived, which indicates that an optical tube is a good tool for guiding and trapping particles in micron- and nanometer-scale dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. McGloin, D.R. Burnham, M.D. Summers, D. Rudd, N. Dewar, S. Anand, Optical manipulation of airborne particles: techniques and applications. Faraday Discuss. 137, 335–350 (2008)

    Article  ADS  Google Scholar 

  2. D.R. Burnham, D. McGloin, Modeling of optical traps for aerosols. JOSA B 28, 2856–2864 (2011)

    Article  ADS  Google Scholar 

  3. V.G. Shvedov, A.V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010)

    Article  ADS  Google Scholar 

  4. Z. Zhang, D. Cannan, J. Liu, P. Zhang, D.N. Christodoulides, Z. Chen, Observation of trapping and transporting air-borne absorbing particles with a single optical beam. Opt. Express 20, 16212–16217 (2012)

    Article  ADS  Google Scholar 

  5. O. Schmidt, M. Garbos, T. Euser, P.S.J. Russell, Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber. Opt. Lett. 37, 91–93 (2012)

    Article  ADS  Google Scholar 

  6. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  7. Sh. Tehranian, Photophoresis of micrometer-sized particles in the free-molecular regime. Int J Heat Mass Transf, 44, 1649

  8. F. Ehrenhaft, On the physics of millionths of centimeters. Phys. Z 18, 352–368 (1917)

    Google Scholar 

  9. A.S. Desyatnikov, V.G. Shvedov, A.V. Rode, W. Krolikowski, Y.S. Kivshar, Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt. Express 17, 8201–8211 (2009)

    Article  ADS  Google Scholar 

  10. M. Summers, J. Reid, D. McGloin, Optical guiding of aerosol droplets. Opt. express 14, 6373–6380 (2006)

    Article  ADS  Google Scholar 

  11. N. Eckerskorn, R. Bowman, R.A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M.J. Padgett, H.N. Chapman, A. Rode, Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum. Phys. Rev. Appl 4, 064001 (2015)

    Article  ADS  Google Scholar 

  12. J.A. Rodrigo, A.M. Caravaca-Aguirre, T. Alieva, G. Cristóbal, M.L. Calvo, Microparticle movements in optical funnels and pods. Opt. Express 19, 5232–5243 (2011)

    Article  ADS  Google Scholar 

  13. N. Eckerskorn, L. Li, R.A. Kirian, J. Küpper, D.P. DePonte, W. Krolikowski, W.M. Lee, H.N. Chapman, A.V. Rode, Hollow Bessel-like beam as an optical guide for a stream of microscopic particles. Opt. Express 21, 30492–30499 (2013)

    Article  ADS  Google Scholar 

  14. E.J. Davis, G. Schweiger, in “The airborne microparticle: its physics, chemistry, optics, and transport phenomena”, ed. by S.S.B. Media (Springer, Berlin, 2002), pp. 755–810

    Chapter  Google Scholar 

  15. S. Beresnev, V. Chernyak, G. Fomyagin, Photophoresis of a spherical particle in a rarefied gas. Phys. Fluid A Fluid Dyn 5, 2043–2052 (1993) (1989–1993)

    Article  ADS  Google Scholar 

  16. A. Melzer, Laser manipulation of particles in dusty plasmas. Plasma Source. Sci. Technol. 10, 303 (2001)

    Article  ADS  Google Scholar 

  17. H.C. Weng, On the importance of thermal creep in natural convective gas micro flow with wall heat fluxes. J. Phys. D Appl. Phys. 41, 115501 (2008)

    Article  ADS  Google Scholar 

  18. YU. I.Yalamov,V. B.Kutukov, andE. R.Shchukin, Theory of the photophoretic motion of the large-size volatile aerosol particle. J. Colloid Interface Sci. 57, 564–571(1976)

    Article  ADS  Google Scholar 

  19. F.F. Abraham, A.C. Zettlemoyer, Homogeneous nucleation theory. Phys. Today 27, 12–52 (1974)

    Article  Google Scholar 

  20. M.K. Alam, The effect of van der waals and viscous forces on aerosol coagulation. Aerosol. Sci. Technol. 6, 41–52 (1987)

    Article  ADS  Google Scholar 

  21. M.D. Allen, O.G. Raabe, Re-evaluation of Millikan’s oil drop data for the motion of small particles in air. J. Aerosol. Sci. 13, 537–547 (1982)

    Article  ADS  Google Scholar 

  22. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, Amsterdam, 1960)

    Google Scholar 

  23. B.V. Derjaguian, Y.I. Yalamov, The Theory of Thermophoresis and Diffusiophoresis of Aerosol Particles and Their Experimental Testing (Pergamon Press, Oxford, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Hosseinibalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, A., Hosseinibalam, F. & Hassanzadeh, S. Reynolds number and diffusion coefficient of micro- and nano-aerosols in optical pipelines. Appl. Phys. B 124, 232 (2018). https://doi.org/10.1007/s00340-018-7105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7105-8

Navigation