Skip to main content
Log in

Axial coherent emissions controlled by an internal coupling field in an open four-level potassium system

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a theoretical model interpreting the experimental results observed under strong two-photon ns laser excitation of the \(\left| {6{{\text{S}}_{1/2}}} \right\rangle\) potassium atomic state, where emissions near the \(\left| {6{{\text{S}}_{1/2}}} \right\rangle \leftrightarrow \left| {4{{\text{P}}_{3/2}}} \right\rangle\) and \(\left| {4{{\text{P}}_{3/2}}} \right\rangle \leftrightarrow \left| {4{{\text{S}}_{1/2}}} \right\rangle\) transitions were experimentally observed. It is shown that the \(\left| {6{{\text{S}}_{1/2}}} \right\rangle \leftrightarrow \left| {4{{\text{P}}_{3/2}}} \right\rangle\) emission initially grows nonlinearly with pump intensity, while subsequently saturates and enhances the generation of radiation near the \(\left| {4{{\text{P}}_{3/2}}} \right\rangle \leftrightarrow \left| {4{{\text{S}}_{1/2}}} \right\rangle\) transition. It is found that a coherent manipulation of an open four-level system is possible by an internally generated, saturated coupling field, despite the energy decay to the continuum. The efficiency of the proposed coherent control method is managed by adjusting the pump intensity and potassium density. Finally, a general control scheme is discussed in which an external pump and an internal coupling field determine the system’s response in a cascade scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Koudoumas, T. Efthimiopoulos, Appl. Phys. B 55, 355 (1992)

    Article  ADS  Google Scholar 

  2. E. Koudoumas, T. Efthimiopoulos, ΙEEE, J. Quant. Electron. 31, 365 (1995)

    Article  ADS  Google Scholar 

  3. M. Katharakis, N. Merlemis, A. Serafetinides, T. Efthimiopoulos, J. Phys. B 35, 4969 (2002)

    Article  ADS  Google Scholar 

  4. N. Merlemis, M. Katharakis, E. Koudoumas, T. Efthimiopoulos, J. Phys. B 36, 1943 (2003)

    Article  ADS  Google Scholar 

  5. N. Merlemis, M. Katharakis, E. Koudoumas, T. Efthimiopoulos, SPIE 5131, 83 (2003)

    ADS  Google Scholar 

  6. M. Katharakis, N. Merlemis, A. Serafetinides, T. Efthimiopoulos, SPIE, 5131, 73 (2003)

    ADS  Google Scholar 

  7. V. Vaičaitis, A. Piskarskas, Opt. Comm. 117, 137 (1995)

    Article  ADS  Google Scholar 

  8. V. Vaičaitis, E. Gaizauskas, Phys. Rev. A 75, 033808 (2007)

    Article  ADS  Google Scholar 

  9. V. Vaičaitis, S. Paulikas, Appl. Phys. B 89, 267 (2007)

    Article  ADS  Google Scholar 

  10. S.E. Harris, J.E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  11. K.J. Boiler, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  12. J.E. Field, K.H. Hahn, S.E. Harris, Phys. Rev. Lett. 67, 3062 (1991)

    Article  ADS  Google Scholar 

  13. K. Hakuta, L. Marmet, B.P. Stoicheff, Phys. Rev. A 45, 5152 (1992)

    Article  ADS  Google Scholar 

  14. G.Z. Zhang, K. Hakuta, B.P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993)

    Article  ADS  Google Scholar 

  15. R.I. Thomson, B.P. Stoicheff, G.Z. Zhang, K. Hakuta, J. Quant. Opt. 6, 349 (1994)

    Article  ADS  Google Scholar 

  16. V.G. Arkhipkin, Opt. Spectrosc. 79, 248 (1995)

    ADS  Google Scholar 

  17. Y. Zhu, Phys. Rev. A 47, 495 (1993)

    Article  ADS  Google Scholar 

  18. Y. Zhu, Opt. Comm. 105, 253 (1994)

    Article  ADS  Google Scholar 

  19. Y. Zhu, Opt. Comm. 107, 499 (1994)

    Article  ADS  Google Scholar 

  20. S.-Q. Gong, H.-G. Teng, Z.-Z. Xu, Phys. Rev. A 51, 3382 (1995)

    Article  ADS  Google Scholar 

  21. P.L. Zhang, Y.,-C. Wang, A.L. Schwalow, J. Opt. Soc. Am. B 1, 9 (1984)

    Article  ADS  Google Scholar 

  22. B.K. Clark, M. Masters, J. Huennekens, Appl. Phys. B 47, 159 (1988)

    Article  ADS  Google Scholar 

  23. Z.J. Jabbour, M.S. Malcuit, J. Huennekens, Appl. Phys. B 52, 281 (1991)

    Article  ADS  Google Scholar 

  24. T. Efthimiopoulos, M.E. Movsessian, M. Katharakis, N. Merlemis, J. Appl. Phys. 80, 2 (1996)

    Article  Google Scholar 

  25. S.M. Hamadi, J.A.D. Stockdale, R.N. Compto, M.S. Pindzola, Phys. Rev. A, 34, 1938, (1986)

    Article  ADS  Google Scholar 

  26. M.A. Moore, W.R. Garrett, M.G. Payne, Opt. Comm. 68, 310 (1988)

    Article  ADS  Google Scholar 

  27. M.S. Malcuit, D.J. Gauthier, R.W. Boyd, Phys. Rev. Lett. 55, 1086 (1985)

    Article  ADS  Google Scholar 

  28. W.R. Garrett, Phys. Rev. Lett. 70, 4059 (1993)

    Article  ADS  Google Scholar 

  29. M.E. Movsessian, A.V. Popoyan, S.V. Shmavonyan, Int. J. of Nonlinear Opt. Phys. 1, 775 (1992)

    Article  ADS  Google Scholar 

  30. N. Omenetto, O.I. Matveev, W. Resto, R. Badini, B.W. Smith, T.D. Winefordner, Appl. Phys. B 58, 303 (1994)

    Article  ADS  Google Scholar 

  31. L. Deng, M.G. Payne, W.R. Garrett, Phys. Rep. 429, 123 (2006)

    Article  ADS  Google Scholar 

  32. N. Merlemis, A. Lyras, M. Katharakis, T. Efthimiopoulos, J. Phys. B At. Mol. Opt. Phys. 39, 1913 (2006)

    Article  ADS  Google Scholar 

  33. A. Armyras, D. Pentaris, T. Efthimiopoulos, N. Merlemis, A. Lyras, J. Phys. B At. Mol. Opt. Phys. 44, 165401 (2011)

    Article  ADS  Google Scholar 

  34. D. Pentaris, T. Efthimiopoulos, N. Merlemis, V. Vaičaitis, A. Lyras, Appl. Phys. B 107, 71 (2012)

    Article  ADS  Google Scholar 

  35. D. Pentaris, T. Efthimiopoulos, N. Merlemis, A. Lyras, J. Mod. Opt. 59, 179 (2012)

    Article  ADS  Google Scholar 

  36. S.N. Dixit, P. Lambropoulos, Phys. Rev. A 24, 318 (1981)

    Article  ADS  Google Scholar 

  37. S.N. Dixit, P. Lambropoulos, Phys. Rev. A. 27, 861 (1983)

    Article  ADS  Google Scholar 

  38. E. Gaižauskas, D. Pentaris, T. Efthimiopoulos, V. Vaičaitis, Opt. Lett. 38 124 (2013)

    Article  ADS  Google Scholar 

  39. D. Pentaris, G. Papademetriou, T. Efthimiopoulos, N. Merlemis, A. Lyras, J. Mod. Opt. 60, 1855 (2013)

    Article  ADS  Google Scholar 

  40. G. Papademetriou, D. Pentaris, T. Efthimiopoulos, A. Lyras, J. Phys. B At. Mol. Opt. Phys. 50, 125401 (2017)

    Article  ADS  Google Scholar 

  41. D. Pentaris, D. Damianos, G. Papademetriou, A. Lyras, K. Steponkevičius, V. Vaičaitis, T. Efthimiopoulos, J. Mod. Opt. 63, 1301 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement no. 654148 Laserlab-Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Papademetriou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlemis, N., Papademetriou, G., Pentaris, D. et al. Axial coherent emissions controlled by an internal coupling field in an open four-level potassium system. Appl. Phys. B 124, 145 (2018). https://doi.org/10.1007/s00340-018-7015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7015-9

Navigation