Skip to main content
Log in

Lasing in dye-infiltrated nanoporous anodic alumina membranes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser emission is obtained from a slab of nanoporous anodic alumina on an aluminum sheet, infiltrated by rhodamine 6G dye in methanol and pumped by 532 nm, 700 ps laser pulses. The nanostructured surface maintains a continuous flow of the dye solution by wetting and evaporation of methanol. Emission along the stripe of the pump light was measured in a 30 μm-thick nanoporous slab to have sharp peaks with line widths < 1.5 nm and spacing of about 2 nm. The output emission is polarized predominantly parallel to the slab and random lasing effects due to scattering in the nanoporous alumina are minimal. We achieve stable lasing in a 1.8 μm-thick nanoporous membrane by depositing a thin layer of gold on the top facet of the membrane. The improved reflectivity from the gold-coated surface further assists the guiding of emitted light along the lasing stripe. The minuscule size of our dye-infiltrated nanoporous membrane resembling microchip lasers is potentially applicable as micro-fluidic lasers for lab-on-a-chip devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.J. Zayhowski, A. Mooradian, Single-frequency microchip Nd lasers. Opt. Lett. 14, 24–26 (1989)

    Article  ADS  Google Scholar 

  2. J.J. Zayhowski, Microchip lasers. Opt. Mater. 11, 255–267 (1999)

    Article  ADS  Google Scholar 

  3. K.J. Vahala, Optical microcavities. Nature (London) 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  4. P.S.J. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  5. R.V. Nair, A.K. Tiwari, S. Mujumdar, B.N. Jagatap, Photonic-band-edge-induced lasing in self-assembled dye-activated photonic crystals. Phys. Rev. A 85, 023844 (2012)

    Article  ADS  Google Scholar 

  6. S.A. Ramakrishna, S. Guenneau, S. Enoch, G. Tayeb, B. Gralak, Confining light with negative refraction. Phys. Rev. A 75, 063830 (2007)

    Article  ADS  Google Scholar 

  7. J. Bingi, V.M. Murukeshan, Plasmonic nanopillar coupled two-dimensional random medium for broadband light trapping and harvesting. J. Nanophotonics 9(1), 093061 (2015)

    Article  ADS  Google Scholar 

  8. V.S. Letokhov, Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 26, 835–840 (1968)

    ADS  Google Scholar 

  9. N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, E. Sauvain, Laser action in strongly scattering media. Nature 368, 436–438 (1994)

    Article  ADS  Google Scholar 

  10. S. Mujumdar, M. Ricci, R. Torre, D.S. Wiersma, Amplified extended modes in random lasers. Phys. Rev. Lett. 93, 053903 (2004)

    Article  ADS  Google Scholar 

  11. C. Vanneste, P. Sebbah, H. Cao, Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett. 98, 143902 (2007)

    Article  ADS  Google Scholar 

  12. D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)

    Article  Google Scholar 

  13. B.N.S. Bhaktha, X. Noblin, N. Bachelard, P. Sebbah, Optofluidic random laser. Appl. Phys. Lett. 101, 151101 (2012)

    Article  ADS  Google Scholar 

  14. A.K. Tiwari, B. Chandra, R. Uppu, S. Mujumdar, Collective lasing from a linear array of dielectric microspheres with gain. Opt. Express 20, 6598–6603 (2012)

    Article  ADS  Google Scholar 

  15. A.K. Tiwari, S. Mujumdar, Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice. Phys. Rev. Lett. 111, 233903 (2013)

    Article  ADS  Google Scholar 

  16. A.K. Tiwari, K.S. Alee, R. Uppu, S. Mujumdar, Single-mode, quasi-stable coherent random lasing in an amplifying periodic-on-average random system. Appl. Phys. Lett. 104, 131112 (2014)

    Article  ADS  Google Scholar 

  17. F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, Z. Lv, Polarization and polarization control of random lasers from dye-doped nematic liquid crystals. Opt. Lett. 38, 1557–1559 (2013)

    Article  ADS  Google Scholar 

  18. J.H. Lin, Y.L. Hsiao, B.Y. Ciou, S.H. Lin, Y.H. Chen, J.J. Wu, Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary. IEEE Photonics J. 7, 1501809 (2015)

    Google Scholar 

  19. S.H. Lin, P.Y. Chen, Y.H. Li, C.H. Chen, J.H. Lin, Y.H. Chen, S.Y. Tsay, J.J. Wu, Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells. IEEE Photonic J. 9, 2 (2017)

    Google Scholar 

  20. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Article  ADS  Google Scholar 

  21. H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio, Lasing from two-dimensional photonic crystals using anodic porous alumina. Adv. Mater. 18(2), 213–216 (2006)

    Article  Google Scholar 

  22. J. Loerke, F. Marlow, Laser emission from dyedoped mesoporous silica fibers. Adv. Mater. 14(23), 1745–1749 (2002)

    Article  Google Scholar 

  23. J. Lü, T. Fan, G. Chen, Random laser action in dye doped nanoporous polymeric film. Opt. Commun. 356, 17–20 (2015)

    Article  ADS  Google Scholar 

  24. N.K. Ibrayev, A.K. Zeinidenov, Plasmon-enhanced stimulated emission of Rhodamine 6 G in nanoporous alumina. Laser Phys. Lett. 11(11), 115805 (2014)

    Article  ADS  Google Scholar 

  25. A.K. Zeinidenov, NKh Ibrayev, A.K. Aimukhanov, The laser active element based on dye on porous alumina. Eurasian Chem. Technol. J. 16, 73–78 (2014)

    Article  Google Scholar 

  26. K.H.A. Lau, S. Tan, K. Tamada, M.S. Sander, W. Knoll, Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates:a waveguide optical study. J. Phys. Chem. B 108, 10812–10818 (2004)

    Article  Google Scholar 

  27. F. Trivinho-Strixino, H.A. Guerreiro, C.S. Gomes, E.C. Pereira, F.E.G. Guimarães, Active waveguide effects from porous anodic alumina: an optical sensor proposition. Appl. Phys. Lett. 97, 011902 (2010)

    Article  ADS  Google Scholar 

  28. A.A. Lutich, S.V. Gaponenko, N.V. Gaponenko, I.S. Molchan, V.A. Sokol, V. Parkhutik, Anisotropic light scattering in nanoporous materials: a photon density of states effect. Nano Lett. 4, 1755 (2004)

    Article  ADS  Google Scholar 

  29. C.B. Ran, G.Q. Ding, W.C. Liu, Y. Deng, W.T. Hou, Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Langmuir 24, 9952–9955 (2008)

    Article  Google Scholar 

  30. S.K. Singh, S. Khandekar, D. Pratap, S.A. Ramakrishna, Wetting dynamics and evaporation of sessile droplets on nano-porous alumina surfaces. Colloids Surf. A Physicochem. Eng. Asp. 432, 71–81 (2013)

    Article  Google Scholar 

  31. A.K. Metya, S. Khan, J.K. Singh, Wetting transition of the ethanol-water droplet on smooth and textured surfaces. J. Phys. Chem. C 118, 4113–4121 (2014)

    Article  Google Scholar 

  32. F.P. Schafer, in “Principles of Dye Laser Operation,” Dye Lasers, ed. by F. P. Schafer (Springer, Berlin, 1977)

  33. B.R. Anderson, R. Gunawidjaja, H. Eilers, Self-healing organic-dye-based random lasers. Opt. Lett. 40, 577–580 (2015)

    Article  ADS  Google Scholar 

  34. B.R. Anderson, R. Gunawidjaja, H. Eilers, Photodegradation and selfhealing in a Rhodamine 6G dye and \(Y_{2}O_{3}\) nanoparticle doped polyurethane random laser. Appl. Phys. B 120, 1–12 (2015)

    Article  Google Scholar 

  35. B.R. Anderson, S.T. Hung, M.G. Kuzyk, Wavelength dependence of reversible photodegradation of disperse orange 11 dye-doped PMMA thin films. J. Opt. Soc. B 32, 1043–1049 (2015)

    Article  ADS  Google Scholar 

  36. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  37. G.R. Fleming, J.M. Morris, G.W. Robinson, Direct observation of rotational diffusion by picosecond spectroscopy. Chem. Phys. 17, 91–100 (1976)

    Article  ADS  Google Scholar 

  38. C. Porter, P.J. Sadkowski, C.J. Tredwell, Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy. Chem. Phys. Lett. 49, 416–420 (1977)

    Article  ADS  Google Scholar 

  39. S. Knitter, M. Kues, C. Fallnich, Emission polarization of random lasers in organic dye solutions. Opt. Lett. 37, 3621–3623 (2012)

    Article  ADS  Google Scholar 

  40. S. Knitter, M. Kues, M. Haidl, C. Fallnich, Linearly polarized emission from random lasers with anisotropically amplifying media. Opt. Express 21, 31591 (2013)

    Article  ADS  Google Scholar 

  41. P.H. Dupont, C. Couteau, D.J. Rogers, F. Hosseini Téhérani, G. Lérondel, Waveguiding-assisted random lasing in epitaxial ZnO thin film. Appl. Phys. Lett. 97, 261109 (2010)

    Article  ADS  Google Scholar 

  42. K.K. Sharma, K.D. Rao, G.R. Kumar, Nonlinear optical interactions in dye-doped solids. Opt. Quantum Electron. 26, 1–23 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support through project No. DST/PHY/20130147 from the Department of Science and Technology, India. AKT also thanks DST for the INSPIRE Faculty Award (DST/INSPIRE/04/2016/002068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjani Kumar Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A.K., Shaik, S. & Ramakrishna, S.A. Lasing in dye-infiltrated nanoporous anodic alumina membranes. Appl. Phys. B 124, 127 (2018). https://doi.org/10.1007/s00340-018-6998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6998-6

Navigation