Skip to main content
Log in

Femtosecond laser processing of microcavity lasers

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In this paper, we reviewed the fabrications of functional microcavity lasers in soft materials such as polymer and protein by femtosecond laser processing. High-quality (Q) microdisks with a laser dye (Rhodamine B, RhB) acting as gain medium were fabricated that produced whispering-gallery-mode (WGM) lasing output. We also obtained unidirectional lasing output with a low lasing threshold in a deformed spiral microcavity at room temperature. Photonic-molecule (PM) microlasers were prepared to investigate the interaction and coupling effects of different cavities, and it was found that the distance between the two disks plays an important role in the lasing behaviors. Single-mode lasing was realized from a stacked PM microlaser through Vernier effect. Furthermore we adopted the biocompatible materials, RhB-doped proteins as a host material and fabricated a three-dimensional (3D) WGM microlaser, which operated well both in air and aqueous environment. The sensing of the protein micro-lasers to Na2SO4 concentration was investigated. Our results of fabricating high-Q microlasers with different materials reveal the potential applications of femtosecond laser processing in the areas of integrated optoelectronic and ultrahigh sensitive bio-sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846

    Article  Google Scholar 

  2. Wiersig J, Gies C, Jahnke F, Aßmann M, Berstermann T, Bayer M, Kistner C, Reitzenstein S, Schneider C, Höfling S, Forchel A, Kruse C, Kalden J, Hommel D. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460(7252): 245–249

    Article  Google Scholar 

  3. Harayama T, Shinohara S. Two-dimensional microcavity lasers. Laser & Photonics Reviews, 2011, 5(2): 247–271

    Article  Google Scholar 

  4. He L, Özdemir S K, Yang L. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 2013, 7(1): 60–82

    Article  Google Scholar 

  5. Ilchenko V S, Matsko A B. Optical resonators with whisperinggallery modes-part II: applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 15–32

    Article  Google Scholar 

  6. Kosma K, Zito G, Schuster K, Pissadakis S. Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber. Optics Letters, 2013, 38(8): 1301–1303

    Article  Google Scholar 

  7. Dai D, Bauters J, Bowers J E. Passive technologies for future largescale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Science & Applications, 2012,1(3): e1-1–e1-12

    Article  Google Scholar 

  8. Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light: Science & Applications, 2013, 2(11):e110-1–e110-5

    Article  Google Scholar 

  9. Lai Y, Lan Y, Lu T. Strong light–matter interaction in ZnO microcavities. Light: Science & Applications, 2013, 2(6): e76-1–e76-7

    Article  Google Scholar 

  10. Grossmann T, Hauser M, Beck T, Gohn-Kreuz C, Karl M, Kalt H, Vannahme C, Mappes T. High-Q conical polymeric microcavities. Applied Physics Letters, 2010, 96(1): 013303

    Article  Google Scholar 

  11. Ta V D, Chen R, Sun H D. Self-assembled flexible microlasers. Advanced Materials, 2012, 24(10): OP60–OP64

    Article  Google Scholar 

  12. Chen R, Ta V D, Sun H D. Single mode lasing from hybrid hemispherical microresonators. Scientific Reports, 2012, 2: 244

    Google Scholar 

  13. Wu Y, Leung P T. Lasing threshold for whispering-gallery-mode microsphere lasers. Physical Review A, 1999, 60(1): 630–633

    Article  Google Scholar 

  14. Fang H, Ding R, Lu S, Yang Y, Chen Q, Feng J, Huang Y, Sun H. Whispering-gallery mode lasing from patterned molecular singlecrystalline microcavity array. Laser & Photonics Reviews, 2013, 7(2): 281–288

    Article  Google Scholar 

  15. Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B. Highly stable on-chip embedded organic whispering gallery mode lasers. Journal of Lightwave Technology, 2014, 32(13): 2415–2419

    Article  Google Scholar 

  16. Kitur J K, Podolskiy V A, Noginov M A. Stimulated emission of surface plasmon polaritons in a microcylinder cavity. Physical Review Letters, 2011, 106(18): 183903

    Article  Google Scholar 

  17. Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009, 457(7228): 455–458

    Article  Google Scholar 

  18. Jiang X, Zou C, Wang L, Gong Q, Xiao Y. Whispering-gallery microcavities with unidirectional laser emission. Laser & Photonics Reviews, 2016, 10(1): 40–61

    Article  Google Scholar 

  19. Armani AM, Srinivasan A, Vahala K J. Soft lithographic fabrication of high Q polymer microcavity arrays. Nano Letters, 2007, 7(6): 1823–1826

    Article  Google Scholar 

  20. Huang Y, Lin J, Yang Y, Yao Q, Lv X, Xiao J, Du Y. Unidirectionalemission single mode whispering-gallery-mode microlasers. In: Proceedings of SPIE, Microcavity Lasers and Applications I. 2012, 8236: 1–8

  21. Wu X, Li H, Liu L, Xu L. Unidirectional single-frequency lasing from a ring-shaped coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105

    Article  Google Scholar 

  22. Kawata S, Sun H B, Tanaka T, Takada K. Finer features for functional microdevices. Nature, 2001, 412(6848): 697–698

    Article  Google Scholar 

  23. Zhang Y, Chen Q, Xia H, Sun H. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448

    Article  Google Scholar 

  24. Liu Z P, Jiang X F, Li Y, Xiao Y F, Wang L, Ren J L, Zhang S J, Yang H, Gong Q. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108

    Article  Google Scholar 

  25. Song J, Lin J, Tang J, Liao Y, He F, Wang Z, Qiao L, Sugioka K, Cheng Y. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Optics Express, 2014, 22(12): 14792–14802

    Article  Google Scholar 

  26. Lin J, Yu S, Ma Y, Fang W, He F, Qiao L, Tong L, Cheng Y, Xu Z. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Optics Express, 2012, 20(9): 10212–10217

    Article  Google Scholar 

  27. Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W, Cheng Y. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Scientific Reports, 2015, 5: 8072

    Article  Google Scholar 

  28. Lin J, Xu Y, Tang J, Wang N, Song J, He F, Fang W, Cheng Y. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A, Materials Science & Processing, 2014, 116(4): 2019–2023

    Article  Google Scholar 

  29. Ta V D, Chen R, Sun H. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Advanced Optical Materials, 2014, 2(3): 220–225

    Article  Google Scholar 

  30. Joshi M P, Pudavar H E, Swiatkiewicz J, Prasad P N, Reianhardt B A. Three-dimensional optical circuitry using two-photon-assisted polymerization. Applied Physics Letters, 1999, 74(2): 170–172

    Article  Google Scholar 

  31. Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F. Direct imprinting of microcircuits on grapheme oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20

    Article  Google Scholar 

  32. Xu B B, Xia H, Niu L G, Zhang Y L, Sun K, Chen Q D, Xu Y, Lv Z Q, Li Z H, Misawa H, Sun H B. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small, 2010, 6(16): 1762–1766

    Article  Google Scholar 

  33. Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B. Ferrofluids for fabrication of remotely controllable micronanomachines by two-photon polymerization. Advanced Materials, 2010, 22(29): 3204–3207

    Article  Google Scholar 

  34. Wang J, He Y, Xia H, Niu L G, Zhang R, Chen Q D, Zhang Y L, Li Y F, Zeng S J, Qin J H, Lin B C, Sun H B. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab on a Chip, 2010, 10(15): 1993–1996

    Article  Google Scholar 

  35. Huang Q, Zhan X, Hou Z, Chen Q, Xu H. Polymer photonicmolecule microlaser fabricated by femtosecond laser direct writing. Optics Communications, 2016, 362: 73–76

  36. Grossmann T, Schleede S, Hauser M, Beck T, Thiel M, von Freymann G, Mappes T, Kalt H. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456

    Article  Google Scholar 

  37. Liu Z, Jiang X, Li Y, Xiao Y, Wang L, Ren J, Zhang S, Yang H, Gong Q. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108

    Article  Google Scholar 

  38. Ku J F, Chen Q D, Zhang R, Sun H B. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Optics Letters, 2011, 36(15): 2871–2873

    Article  Google Scholar 

  39. Sasaki F, Kobayashi S, Haraichi S, Fujiwara S, Bando K, Masumoto Y, Hotta S. Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in Si/SiO2 substrates. Advanced Materials, 2007, 19(21): 3653–3655

    Article  Google Scholar 

  40. Grossmann T, Schleede S, Hauser M, Beck T, Thiel M, von Freymann G, Mappes T, Kalt H. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456

    Article  Google Scholar 

  41. Juodkazis S, Fujiwara K, Takahashi T, Matsuo S, Misawa H. Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity. Journal of Applied Physics, 2002, 91(3): 916–921

    Article  Google Scholar 

  42. Ben-Messaoud T, Zyss J. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110

    Article  Google Scholar 

  43. Zhan X P, Ku J F, Xu Y X, Zhang X L, Zhao J, Fang W, Xu H L, Sun H B. Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers fabricated by femtosecond laser direct writing. IEEE Photonics Technology Letters, 2015, 27(3): 311–314

    Article  Google Scholar 

  44. Hara Y, Mukaiyama T, Takeda K, Kuwata-Gonokami M. Photonic molecule lasing. Optics Letters, 2003, 28(24): 2437–2439

    Article  Google Scholar 

  45. Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T. Polymeric photonic molecule super-mode lasers on silicon. Light: Science & Applications, 2013, 2(5): e82-1–e82-4

    Article  Google Scholar 

  46. Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B. Photonic-molecule single-mode laser. IEEE Photonics Technology Letters, 2015, 27(11): 1157–1160

    Article  Google Scholar 

  47. Sun Y, Hou Z, Sun S, Zheng B, Ku J, Dong W, Chen Q, Sun H. Protein-based three-dimensional whispering-gallery-mode microlasers with stimulus-responsiveness. Scientific Reports, 2015, 5: 12852

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huailiang Xu or Hongbo Sun.

Additional information

Xuepeng Zhan received his B.S. degree from Jilin University in 2012 and now pursues his Ph.D. at the College of Electronic Science and Engineering of Jilin University. His current research is mainly related to the fabrication of micro/nano-scale structures by femtosecond laser processing.

Huailiang Xu received his Ph.D. degree in physics from Lund University of Sweden in 2004. He then worked as a postdoctoral researcher at Laval University of Canada. In January 2008, he became an assistant professor at The University of Tokyo, Japan. Since September 2009, He has been a full professor at Jilin University, China. His research interests are ultrafast intense laser science, laser fabrication, and atomic and molecular spectroscopy.

Hongbo Sun received his Ph.D. degree in electronics from Jilin University in 1996. He worked as a postdoctoral researcher at University of Tokushima from 1996 to 2000, and then as an assistant professor at Osaka University. In 2005, he was promoted as a full professor (Changjiang Scholar) in Jilin University. He was awarded the Outstanding Young Scientist Award issued by the minister of MEXT (Japan) in 2006. His research interests are laser nanofabrication and ultrafast spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Xu, H. & Sun, H. Femtosecond laser processing of microcavity lasers. Front. Optoelectron. 9, 420–427 (2016). https://doi.org/10.1007/s12200-016-0581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-016-0581-8

Keywords

Navigation