Skip to main content
Log in

Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The tunable and enhanced Goos–Hänchen (GH) shift for TM-polarized reflected beam from the graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. It is demonstrated that the lateral shift of the reflected beam can be tunable by Fermi energy and thickness of dielectric, and the largest GH shifts can be hundreds of wavelengths due to the enhanced effect by the GHMM. The minimum reflected angle (Brewster angle) moves to larger angle of incidence with the Fermi energy and thickness of dielectric increasing. Numerical simulation results for Gaussian incident beams coincide with the theoretical results from the stationary-phase method. The GH shift from the GHMM, maybe, open a new way for photoelectronic device application in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Goos, H. Hänchen, Ein neuer und fundamental Versuch zur Totalreflexion. Ann. Phys 1, 333–346 (1947)

    Article  Google Scholar 

  2. A. Madani, S.R. Entezar, Tunable enhanced Goos–Hänchen shift in one-dimensional photonic crystals containing graphene monolayers. Superlatt. Microstruct. 86, 105–110 (2015)

    Article  ADS  Google Scholar 

  3. Y. Xiang, X. Dai, S. Wen, Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab. Appl. Phys. A 87.2, 285–290 (2007)

    Article  ADS  Google Scholar 

  4. D. Felbacq, A. Moreau, R. Smaâli, Goos–Hänchen effect in the gaps of photonic crystals. Opt. Lett. 28, 181633 (2003)

    Article  ADS  Google Scholar 

  5. P.R. Berman, Goos-Hanchen shift in negatively refractive media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66.2, 067603 (2002)

    Article  Google Scholar 

  6. C.F. Li, Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. Phys. Rev. Lett. 91(13), 133903 (2003)

    Article  ADS  Google Scholar 

  7. L.G. Wang, S.Y. Zhu, M.S. Zubairy, Goos-hanchen shifts of partially coherent light fields. Phys. Rev. Lett. 111(22), 223901 (2013)

    Article  ADS  Google Scholar 

  8. B. Zhao, L. Gao, Temperature-dependent Goos–Hänchen shift on the interface of metal/dielectric composites. Opt. Express 17(24), 21433–21441 (2009)

    Article  ADS  Google Scholar 

  9. C. Luo, J. Guo, Q. Wang, Y. Xiang, Electrically controlled Goos–Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure. Opt. Express 21, 910430–910439 (2013)

    Google Scholar 

  10. W.D. Tan, C.Y. Su, R.J. Knize, G.Q. Xie, Mode locking of ceramic nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett. 96(3), 031106-031106-3 (2010)

    Article  ADS  Google Scholar 

  11. Q. Bao, H. Zhang, B. Wang, Z. Ni, C.H. Lim, Y.X. Wang et al., Broadband graphene polarizer. Nat. Photon. 5(7), 411–415 (2011)

    Article  ADS  Google Scholar 

  12. Z. Fang, Z. Liu, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, Graphene-antenna sandwich photodetector. Nano Lett. 12(7), 3808 (2012)

    Article  ADS  Google Scholar 

  13. X. Li, P. Wang, F. Xing, X.D. Chen, Z.B. Liu, J.G. Tian, Experimental observation of a giant Goos–Hänchen shift in graphene using a beam splitter scanning method. Opt. Lett. 39(19), 5574 (2014)

    Article  ADS  Google Scholar 

  14. Y. Wang, Y. Liu, B. Wang, Tunable electron wave filter and Goos–Hänchen shift in asymmetric graphene double magnetic barrier structures. Superlatt. Microstruct. 60, 240–247 (2013)

    Article  ADS  Google Scholar 

  15. L. Jiang, Q. Wang, Y. Xiang, X. Dai, S. Wen, Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface. IEEE Photon. J. 5(3), 6500108–6500108 (2013)

    Article  Google Scholar 

  16. Q. Bao, H. Zhang, B. Wang, Z.C.H. Ni, Y.X. Lim, Y. Wang, Broadband graphene polarizer. Nat. Photon. 5(7), 411–415 (2011)

    Article  ADS  Google Scholar 

  17. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291 (2011)

    Article  ADS  Google Scholar 

  18. C.H. Lui, Z.K.F. Li, E. Mak, T.F. Cappelluti, Heinz, Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7(12), 944–947 (2011)

    Article  Google Scholar 

  19. Z. Shi, C. Jin, W. Yang, Gate-dependent pseudospin mixing in graphene/boron nitride moire superlattices. Nat. Phys. 10(10), 743–747 (2014)

    Article  Google Scholar 

  20. A. Poddubny, I. Iorsh, P. Below, Y. Kivshiar, Hyperbolic metamaterials. Nat. Photon. 7(12), 948–957 (2013)

    Article  ADS  Google Scholar 

  21. S.A. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109(10), 104301 (2012)

    Article  ADS  Google Scholar 

  22. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14(6), 1013–1020 (2012)

    Article  Google Scholar 

  23. X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.B. Xu, High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photon. 7(11), 888–891 (2013)

    Article  ADS  Google Scholar 

  24. F.M. Zhang, Y. He, X. Chen, Guided modes in graphene waveguides. Appl. Phys. Lett. 94(21), 109 (2009)

    Google Scholar 

  25. A.Y. Nikitin, F. Guinea, F.J. García-Vidal, L. Martín-Moreno, Edge and waveguide thz surface plasmon modes in graphene micro-ribbons. Phys. Rev. B 84(16), 1401–1408 (2012)

    Google Scholar 

  26. Z. Jiao, R. Ning, Y. Xu, J. Bao, Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals. Phys. Plasmas, 23(6), 077405–071865 (2016)

    Article  Google Scholar 

  27. Y. Xiang, X. Dai, J. Guo, H. Zhang, S.C. Wen, D.Y. Wang, Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014)

    Article  ADS  Google Scholar 

  28. R. Ning, S. Liu, H. Zhang, Z. Jiao, Dual-gated tunable absorption in graphene-based hyperbolic metamaterial. Aip Adv. 5(6), 077405 (2015)

    Article  Google Scholar 

  29. J.A. Kong, B.I. Wu, Y. Zhang, Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability. Appl. Phys. Lett. 80(12), 2084–2086 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the project of Shaanxi science and technology (Grant no. 2016KTZDGY05-02), Launching Funds for Doctors of Shanxi Datong University (Grant no. 2014-B-04), Shanxi Provincial Natural Science Foundation (Grant nos. 201601D021029, 201701D221096), Natural Science Fund of Datong City (Grant no. 2017131), and Foundation for Doctors of Hengyang Normal University (Grant no. 16D03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Yq., Xiang, Y. & Luo, C. Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials. Appl. Phys. B 124, 115 (2018). https://doi.org/10.1007/s00340-018-6987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6987-9

Keywords

Navigation