Skip to main content
Log in

Goos–Hänchen effect on a graphene-based hyperbolic metamaterial slab

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the tunable Goos–Hänchen (GH) effect on a graphene-based hyperbolic metamaterial slab has been investigated using the transfer matrix and finite element methods. It was shown that the excitation of the surface polaritons in the THz frequency region results in enhanced GH shift at the interface of the slab which can be controlled and tuned by changing the orientation of the optical axis of the slab, the chemical potential of graphene monolayers and the thickness of the air gap layer. These may have interesting applications in the optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.Y. Bliokh, A. Aiello, J. Opt. 15, 014001 (2013)

    ADS  Google Scholar 

  2. F. Goos, H. Hanchen, Ann. Phys. 1, 333 (1947)

    Google Scholar 

  3. K. Artmann, Ann. Phys. 437, 87–102 (1948)

    Google Scholar 

  4. M. Cheng, P. Fu, X. Chen, X. Zeng, S. Feng, R. Chen, JOSA B 31, 2325–2329 (2014)

    ADS  Google Scholar 

  5. J.P. Hugonin, R. Petit, J. Opt. 8, 73–87 (1977)

    ADS  Google Scholar 

  6. B. Horowitz, T. Tamir, JOSA 61, 586–594 (1971)

    ADS  Google Scholar 

  7. R.H. Renard, JOSA 54, 1190–1197 (1964)

    ADS  Google Scholar 

  8. J. Cowan, B. Aničin, JOSA 67, 1307–1314 (1977)

    ADS  Google Scholar 

  9. F. Bretenaker, A. Le Floch, L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992)

    ADS  Google Scholar 

  10. A. Haibel, G. Nimtz, A. Stahlhofen, Phys. Rev. E 63, 047601 (2001)

    ADS  Google Scholar 

  11. A. Namdar, I.V. Shadrivov, Y.S. Kivshar, Phys. Rev. A 75, 053812 (2007)

    ADS  Google Scholar 

  12. D. Felbacq, A. Moreau, R. Smaâli, Opt. Lett. 28, 1633–1635 (2003)

    ADS  Google Scholar 

  13. P. Hou, Y. Chen, X. Chen, J. Shi, Q. Wang, Phys. Rev. A 75, 045802 (2007)

    ADS  Google Scholar 

  14. L.G. Wang, S.Y. Zhu, Opt. Lett. 31, 101–103 (2006)

    ADS  Google Scholar 

  15. J. He, J. Yi, S. He, Opt. Express 14, 3024–3029 (2006)

    ADS  Google Scholar 

  16. Y. Xu, C.T. Chan, H. Chen, Sci. Rep. 5, 8681 (2015)

    ADS  Google Scholar 

  17. V.J. Yallapragada, A.P. Ravishankar, G.L. Mulay, G.S. Agarwal, V.G. Achanta, Sci. Rep. 6, 1–8 (2016)

    Google Scholar 

  18. Y. Kang, P. Gao, H. Liu, J. Zhang, Plasmonics 14, 1289–1293 (2019)

    Google Scholar 

  19. H. Wang, Z. Zhou, H. Tian, Y. Pei, J. Phys. D. Appl. Phys. 42, 175301 (2009)

    ADS  Google Scholar 

  20. J.S. Li, J.F. Wu, L. Zhang, Opt. Commun. 334, 101–104 (2015)

    ADS  Google Scholar 

  21. F. Wang, A. Lakhtakia, Opt. Commun. 235, 107–132 (2004)

    ADS  Google Scholar 

  22. W. Yu, H. Sun, L. Gao, Sci. Rep. 7, 45866 (2017)

    ADS  Google Scholar 

  23. M.A. Othman, C. Guclu, F. Capolino, J. Nanophotonics 7, 073089 (2013)

    ADS  Google Scholar 

  24. P. Shekhar, J. Atkinson, Z. Jacob, Nano Converg. 1, 14 (2014)

    Google Scholar 

  25. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Nat. Photonics 7, 948 (2013)

    ADS  Google Scholar 

  26. X. Yang, J. Yao, J. Rho, X. Yin, X. Zhang, Nat. Photonics 6, 450 (2012)

    ADS  Google Scholar 

  27. C.R. Simovski, P.A. Belov, A.V. Atrashchenko, Y.S. Kivshar, Adv. Mater. 24, 4229–4248 (2012)

    Google Scholar 

  28. A. Madani, S.R. Entezar, Photonic Nanostruct. 25, 58–64 (2017)

    ADS  Google Scholar 

  29. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    ADS  Google Scholar 

  30. A.K. Geim, Science 324, 1530–1534 (2009)

    ADS  Google Scholar 

  31. G.W. Hanson, J. Appl. Phys. 104, 084314 (2008)

    ADS  Google Scholar 

  32. P. Tassin, T. Koschny, C.M. Soukoulis, Science 341, 620–621 (2013)

    ADS  Google Scholar 

  33. Y. Kang, Y. Xiang, C. Luo, Appl. Phys. B 124, 115 (2018)

    ADS  Google Scholar 

  34. Y. Kang, W. Ren, Q. Cao, Superlattices Microstruct. 120, 1–6 (2018)

    ADS  Google Scholar 

  35. L.G. Wang, M. Ikram, M.S. Zubairy, Phys. Rev. A 77, 023811 (2008)

    ADS  Google Scholar 

  36. T. Sakata, H. Togo, F. Shimokawa, Appl. Phys. Lett. 76, 2841–2843 (2000)

    ADS  Google Scholar 

  37. J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, J. Appl. Phys. 112, 083104 (2012)

    ADS  Google Scholar 

  38. Y. Nie, Y. Li, Z. Wu, X. Wang, W. Yuan, M. Sang, Opt. Express 22, 8943–8948 (2014)

    ADS  Google Scholar 

  39. X. Yin, L. Hesselink, Appl. Phys. Lett. 89, 261108 (2006)

    ADS  Google Scholar 

  40. Q. Ouyang, L. Kang, D. X. Quyen, P. Coquet, K. T. Yong, Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors), Paper SW2B.2 (Optical Society of America, 2019). https://doi.org/10.1364/SENSORS.2019.SW2B.2

  41. S. Pechprasarn, T.W.K. Chow, M.G. Somekh, Sci. Rep. 8, 1–14 (2018)

    Google Scholar 

  42. Y.S. Dadoenkova, S.G. Moiseev, A.S. Abramov, A.S. Kadochkin, A.A. Fotiadi, I.O. Zolotovskii, Ann. Phys. (Berl.) 529, 1700037 (2017)

    ADS  Google Scholar 

  43. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media Publication, Germany, 2007). ISBN: 0387378251, 9780387378251

  44. T. Davis, Opt. Commun. 282, 135–140 (2009)

    ADS  Google Scholar 

  45. A. Madani, S.R. Entezar, Superlattices Microstruct. 75, 692–700 (2014)

    ADS  Google Scholar 

  46. A. Madani, S.R. Entezar, Superlattices Microstruct. 86, 105–110 (2015)

    ADS  Google Scholar 

  47. I.S. Nefedov, C.A. Valagiannopoulos, L.A. Melnikov, J. Opt. 15, 114003 (2013)

    ADS  Google Scholar 

  48. P. Tassin, T. Koschny, C.M. Soukoulis, Phys. B 407, 4062–4065 (2012)

    ADS  Google Scholar 

  49. S. Wang, L. Gao, Eur. Phys. J. B 48, 29–36 (2005)

    ADS  Google Scholar 

  50. L.M. Brekhovskikh, Waves in Layered Media (Academic Press, New York, 1980)

    MATH  Google Scholar 

  51. I. Iorsh, I. Mukhin, I. Shadrivov, P. Belov, Y. Kivshar, Phys. Rev. B 87, 075416 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Madani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaabani, N., Madani, A., Shiri, M. et al. Goos–Hänchen effect on a graphene-based hyperbolic metamaterial slab. Appl. Phys. A 126, 775 (2020). https://doi.org/10.1007/s00339-020-03967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03967-8

Keywords

Navigation