Applied Physics B

, 124:62 | Cite as

A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy

  • Peter Fjodorow
  • Ortwin Hellmig
  • Valery M. Baev
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications


A broadband tunable Tm/Ho-doped fiber laser is developed for sensitive in situ measurements of intracavity absorption spectra in the spectral range of 4780–5560 cm−1. This spectral range includes an atmospheric transmission window enabling sensitive measurements of various species. The spectral bandwidth of laser emission varies from 20 to 60 cm−1 and is well suitable for multicomponent spectroscopy. The sensitivity achieved in cw operation corresponds to an effective absorption path length of Leff = 20 km, with a spectral noise of less than 1%. The spectroscopic system is applied for measurements of absorption spectra of H2O, NH3 and for simultaneous in situ detection of three isotopes of CO2 in human breath, which is important for medical diagnostics procedures.


  1. 1.
    M.W. Sigrist, R. Bartlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wächter, Trace gas monitoring with infrared laser-based detection schemes. Appl. Phys. B 90, 289–300 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Yao, A.J. Hoffman, C.F. Gmachl, Mid-infrared quantum cascade lasers. Nat. Photon. 6, 432–439 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    O. Henderson-Sapir, J. Munch, D.J. Ottaway, Mid-infrared fiber lasers at and beyond 3.5 µm using dual-wavelength pumping. Opt. Lett. 39, 493–496 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 171–202 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    B. Löhden, S. Kuznetsova, K. Sengstock, V.M. Baev, A. Goldman, S. Cheskis, B. Pálsdóttir, Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments. Appl. Phys. B 102, 331–344 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    P. Fjodorow, M. Fikri, C. Schulz, O. Hellmig, V.M. Baev, Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy. Appl. Phys. B 122, 159 (2016). ADSCrossRefGoogle Scholar
  7. 7.
    P. Fjodorow, I. Baev, O. Hellmig, K. Sengstock, V.M. Baev, Sensitive, time-resolved, broadband spectroscopy of single transient processes. Appl. Phys. B 120, 667 (2015). ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Fleisher, B.J. Bjork, T.Q. Bui, K.C. Cossel, M. Okumura, J. Ye, Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5(13), 2241–2246 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Abd Alrahman, A. Khodabakhsh, F.M. Schmidt, Z. Qu, A. Foltynowicz, Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame. Opt. Express 22, 13889 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    P. Fjodorow, O. Hellmig, V.M. Baev, H.B. Levinsky, A.V. Mokhov, Intracavity absorption spectroscopy of formaldehyde from 6230 to 6420 cm–1. Appl. Phys. B 123, 147 (2017). ADSCrossRefGoogle Scholar
  11. 11.
    A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V.M. Baev, P.E. Toschek, Intracavity absorption spectroscopy with thulium-doped fibre laser. Opt. Commun. 215, 113 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbache, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikov, S.A. Tashkun, J. Vande Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J. Geng, J.I. Lunine, G.H. Atkinson, Absolute intensities and pressure-broadening coefficients of 2-mm CO2 absorption features: intracavity laser spectroscopy. Appl. Opt. 40(15), 2551–2560 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    N.P. Vagin, A.A. lonin, I.V. Kochetov, A.P. Napartovich, Y.P. Podmar’kov, M.P. Frolov, N.N. Yuryshev, Measurement of the O2 (b1Σg + − a1g) transition probability by the method of intracavity laser spectroscopy. Quant. Electron. 35(4), 378–384 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    V.M. Baev, G. Gaida, H. Schröder, P.E. Toschek, Quantum fluctuations of a multi-mode laser oscillator. Opt. Commun. 38, 309–313 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    J. Hunkemeier, R. Böhm, V.M. Baev, P.E. Toschek, Spectral dynamics of multimode Nd3+- and Yb3+-doped fibre lasers with intracavity absorption. Opt. Commun. 176, 417–428 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    E.V. Stepanov, Methods of highly sensitive gas analysis of molecular biomarkers in study of exhaled air. Phys. Wave Phenom. 15, 149 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    F.M. Schmidt, O. Vaittinen, M. Metsälä, M. Lehto, C. Forsblom, P.-H. Groop, L. Halonen, Ammonia in breath and emitted from skin. J. Breath Res. 7, 017109 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Modak, Stable isotope breath tests in clinical medicine: a review. J. Breath Res. 1, 104003 (2007)CrossRefGoogle Scholar
  20. 20.
    S.N. Andreev, E.S. Mironchuk, I.V. Nikolaev, V.N. Ochkin, M.V. Spiridonov, S.N. Tskhai, High precision measurements of the 13CO2/12CO2 isotope ratio at atmospheric pressure in human breath using a 2 µm diode laser. Appl. Phys. B 104, 73 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    A. Maity, S. Som, C. Ghosh, G.D. Banik, S.B. Daschakraborty, S. Ghosh, S. Chaudhuri, M. Pradhan, Oxygen-18 stable isotope of exhaled breath CO2 as a non-invasive marker of Helicobacter pylori infection. J. Anal. At. Spectrom. 29, 2251–2255 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Ghosh, G.D. Banik, A. Maity, S. Som, A. Chakraborty, C. Selvan, S. Ghosh, S. Chowdhury, M. Pradhan, Oxygen-18 isotope of breath CO2 linking to erythrocytes carbonic anhydrase activity: a biomarker for pre-diabetes and type 2 diabetes. Sci. Rep. 5, 8137 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    S. Guillon, E. Pili, P. Agrinier, Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media. Appl. Phys. B 107, 449 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Des Marais, J.G. Moore, Carbon and its isotopes in mid-oceanic basaltic glasses. ‎Earth Planet. Sci. Lett. 69, 43 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    T.B. Sauke, J.F. Becker, Stable isotope laser spectrometer for exploration of Mars. Planet. Space Sci. 46, 805 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Combustion and Gas Dynamics-Reactive FluidsUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Institute of Laser PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations