Skip to main content
Log in

Mach–Zehnder interferometer implementation for thermo-optical and Kerr effect study

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we propose the Mach–Zehnder interferometric method for third-order nonlinear optical and thermo-optical studies. Both effects manifest themselves as refractive index dependence on the incident light intensity and are widely employed for multiple opto-optical and thermo-optical applications. With the implemented method, we have measured the Kerr and thermo-optical coefficients of chloroform under CW, ns and ps laser irradiance. The application of lasers with different light wavelengths, pulse duration and energy allowed us to distinguish the processes responsible for refractive index changes in the investigated solution. Presented setup was also used for demonstration of opto-optical switching. Results from Mach–Zehnder experiment were compared to Z-scan data obtained in our previous studies. Based on this, a quality comparison of both methods was assessed and advantages and disadvantages of each method were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.A. Padilha, S. Webster, O.V. Przhonska, H. Hu, D. Peceli, J.L. Rosch, M.V. Bondar, A.O. Gerasov, Y.P. Kovtun, M.P. Shandura, A.D. Kachkovski, J. Hagan, E.W. Van Stryland, J. Mater. Chem. 19, 7503 (2009)

    Article  Google Scholar 

  2. S. Webster, J. Fu, L.A. Padilha, O.V. Przhonska, D.J. Hagan, E.W. Van Stryland, M.V. Bondar, Y.L. Slominsky, A.D. Kachkovski, Chem. Phys. 348, 143 (2008)

    Article  ADS  Google Scholar 

  3. A. Bundulis, E. Nitiss, I. Mihailovs, J. Busenbergs, M. Rutkis, J. Phys. Chem. C 120, 27515 (2016)

    Article  Google Scholar 

  4. D. Gudeika, A. Bundulis, I. Mihailovs, D. Volyniuk, M. Rutkis, J.V. Grazulevicius, Dye Pigment 140, 431 (2017)

    Article  Google Scholar 

  5. X. Yan, Z. Liu, X. Zhang, W. Zhou, J. Tian, Opt. Express 17, 1821 (2009)

    Google Scholar 

  6. A.E. Sifain, L.F. Tadesse, J.A. Bjorgaard, D.E. Chavez, O.V. Prezhdo, R.J. Scharff, S. Tretiak, J. Chem. Phys. 146, 114308 (2017)

    Article  ADS  Google Scholar 

  7. D. Hu, Y. Hu, W. Huang, Q. Zhang, Opt. Commun. 285, 4941 (2012)

    Article  ADS  Google Scholar 

  8. A.A. Borshch, M.S. Brodyn, V.N. Starkov, V.I. Rudenko, V.I. Volkov, A.Y. Boyarchuk, A.V. Semenov, Opt. Commun. 364, 88 (2016)

    Article  ADS  Google Scholar 

  9. S. Ahadi, N. Granpayeh, Opt. Commun. 349, 36 (2015)

    Article  ADS  Google Scholar 

  10. R. Coso, J. Solis, J. Opt. Soc. Am. B 21, 640 (2004)

    Article  ADS  Google Scholar 

  11. R. W. Boyd, Nonlinear Optics (2003)

  12. M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  13. J.E. Aber, M.C. Newstein, B.A. Garetz, J. Opt. Soc. Am. B 17, 120 (2000)

    Article  ADS  Google Scholar 

  14. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, P. Kockaert, Opt. Lett. 37, 1856 (2012)

    Article  ADS  Google Scholar 

  15. M. Falconieri, G. Salvetti, Appl. Phys. B Lasers Opt. 69, 133 (1999)

    Article  ADS  Google Scholar 

  16. A. Major, J.S. Aitchison, P.W.E. Smith, F. Druon, P. Georges, B. Viana, G.P. Aka, Appl. Phys. B Lasers Opt. 80, 199 (2005)

    Article  ADS  Google Scholar 

  17. Z. Liu, X. Yan, J. Tian, W. Zhou, W. Zang, Opt. Express 15, 13351 (2007)

    Article  ADS  Google Scholar 

  18. I.V. Kityk, A. Fahmi, B. Sahraoui, G. Rivoire, I. Feeks, Opt. Mater. (Amst). 16, 417 (2001)

    Article  ADS  Google Scholar 

  19. M. Samoc, A. Samoc, B. Luther-davies, J. Opt. Soc. Am. B 15, 817 (1998)

    Article  ADS  Google Scholar 

  20. M.J. Bloemer, J.W. Haus, P.R. Ashley, J. Opt. Soc. Am. B 7, 790 (1990)

    Article  ADS  Google Scholar 

  21. L. Pálfalvi, J. Heeling, Appl. Phys. B Lasers Opt. 78, 775 (2004)

    Article  ADS  Google Scholar 

  22. G. Boudebs, M. Chis, X.N. Phu, J. Opt. Soc. Am. B 18, 623 (2001)

    Article  ADS  Google Scholar 

  23. E. Nitiss, A. Bundulis, A. Tokmakov, J. Busenbergs, E. Linina, M. Rutkis, Phys. Status Solidi Appl. Mater. Sci. 212, 1867 (2015)

    Article  ADS  Google Scholar 

  24. J. Brosi, C. Koos, L.C. Andreani, M. Waldow, J. Leuthold, W. Freude, Opt. Express 16, 4177 (2008)

    Article  ADS  Google Scholar 

  25. I. Glesk, P.J. Bock, P. Cheben, J.H. Schmid, J. Lapointe, S. Janz, Opt. Express 19, 14031 (2011)

    Article  ADS  Google Scholar 

  26. G. Boudebs, F. Sanchez, C. Duverger, B. Boulard, Opt. Commun. 199, 257 (2001)

    Article  ADS  Google Scholar 

  27. S. Jeyaram, T. Geethakrishnan, Opt. Laser Technol. 89, 179 (2017)

    Article  ADS  Google Scholar 

  28. J. Yang, Y. Song, J. Gu, H. Zheng, Opt. Commun. 282, 122 (2009)

    Article  ADS  Google Scholar 

  29. T. Cassano, R. Tommasi, M. Ferrara, F. Babudri, G.M. Farinola, F. Naso, Chem. Phys. 272, 111 (2001)

    Article  ADS  Google Scholar 

  30. L. Pálfalvi, B.C. Tóth, G. Almási, J.A. Fülöp, J. Hebling, Appl. Phys. B Lasers Opt. 97, 679 (2009)

    Article  ADS  Google Scholar 

  31. A. Samoc, J. Appl. Phys. 94, 6167 (2003)

    Article  ADS  Google Scholar 

  32. H. Cabrera, A. Marcano, Y. Castellanos, Condens. Matter Phys. 9, 385 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2016/10 realized at the Institute of Solid State Physics, University of Latvia as well as by the ERDF 1.1.1.1 activity project Nr. 1.1.1.1/16/A/046 “Application assessment of novel organic materials by prototyping of photonic devices” is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturs Bundulis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bundulis, A., Nitiss, E., Busenbergs, J. et al. Mach–Zehnder interferometer implementation for thermo-optical and Kerr effect study. Appl. Phys. B 124, 56 (2018). https://doi.org/10.1007/s00340-018-6926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6926-9

Navigation