Advertisement

Applied Physics B

, 124:56 | Cite as

Mach–Zehnder interferometer implementation for thermo-optical and Kerr effect study

  • Arturs Bundulis
  • Edgars Nitiss
  • Janis Busenbergs
  • Martins Rutkis
Article

Abstract

In this paper, we propose the Mach–Zehnder interferometric method for third-order nonlinear optical and thermo-optical studies. Both effects manifest themselves as refractive index dependence on the incident light intensity and are widely employed for multiple opto-optical and thermo-optical applications. With the implemented method, we have measured the Kerr and thermo-optical coefficients of chloroform under CW, ns and ps laser irradiance. The application of lasers with different light wavelengths, pulse duration and energy allowed us to distinguish the processes responsible for refractive index changes in the investigated solution. Presented setup was also used for demonstration of opto-optical switching. Results from Mach–Zehnder experiment were compared to Z-scan data obtained in our previous studies. Based on this, a quality comparison of both methods was assessed and advantages and disadvantages of each method were analyzed.

Notes

Acknowledgements

The financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2016/10 realized at the Institute of Solid State Physics, University of Latvia as well as by the ERDF 1.1.1.1 activity project Nr. 1.1.1.1/16/A/046 “Application assessment of novel organic materials by prototyping of photonic devices” is greatly acknowledged.

References

  1. 1.
    L.A. Padilha, S. Webster, O.V. Przhonska, H. Hu, D. Peceli, J.L. Rosch, M.V. Bondar, A.O. Gerasov, Y.P. Kovtun, M.P. Shandura, A.D. Kachkovski, J. Hagan, E.W. Van Stryland, J. Mater. Chem. 19, 7503 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Webster, J. Fu, L.A. Padilha, O.V. Przhonska, D.J. Hagan, E.W. Van Stryland, M.V. Bondar, Y.L. Slominsky, A.D. Kachkovski, Chem. Phys. 348, 143 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A. Bundulis, E. Nitiss, I. Mihailovs, J. Busenbergs, M. Rutkis, J. Phys. Chem. C 120, 27515 (2016)CrossRefGoogle Scholar
  4. 4.
    D. Gudeika, A. Bundulis, I. Mihailovs, D. Volyniuk, M. Rutkis, J.V. Grazulevicius, Dye Pigment 140, 431 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Yan, Z. Liu, X. Zhang, W. Zhou, J. Tian, Opt. Express 17, 1821 (2009)Google Scholar
  6. 6.
    A.E. Sifain, L.F. Tadesse, J.A. Bjorgaard, D.E. Chavez, O.V. Prezhdo, R.J. Scharff, S. Tretiak, J. Chem. Phys. 146, 114308 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    D. Hu, Y. Hu, W. Huang, Q. Zhang, Opt. Commun. 285, 4941 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Borshch, M.S. Brodyn, V.N. Starkov, V.I. Rudenko, V.I. Volkov, A.Y. Boyarchuk, A.V. Semenov, Opt. Commun. 364, 88 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    S. Ahadi, N. Granpayeh, Opt. Commun. 349, 36 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    R. Coso, J. Solis, J. Opt. Soc. Am. B 21, 640 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    R. W. Boyd, Nonlinear Optics (2003)Google Scholar
  12. 12.
    M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    J.E. Aber, M.C. Newstein, B.A. Garetz, J. Opt. Soc. Am. B 17, 120 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, P. Kockaert, Opt. Lett. 37, 1856 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Falconieri, G. Salvetti, Appl. Phys. B Lasers Opt. 69, 133 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    A. Major, J.S. Aitchison, P.W.E. Smith, F. Druon, P. Georges, B. Viana, G.P. Aka, Appl. Phys. B Lasers Opt. 80, 199 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Liu, X. Yan, J. Tian, W. Zhou, W. Zang, Opt. Express 15, 13351 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    I.V. Kityk, A. Fahmi, B. Sahraoui, G. Rivoire, I. Feeks, Opt. Mater. (Amst). 16, 417 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    M. Samoc, A. Samoc, B. Luther-davies, J. Opt. Soc. Am. B 15, 817 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Bloemer, J.W. Haus, P.R. Ashley, J. Opt. Soc. Am. B 7, 790 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    L. Pálfalvi, J. Heeling, Appl. Phys. B Lasers Opt. 78, 775 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    G. Boudebs, M. Chis, X.N. Phu, J. Opt. Soc. Am. B 18, 623 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    E. Nitiss, A. Bundulis, A. Tokmakov, J. Busenbergs, E. Linina, M. Rutkis, Phys. Status Solidi Appl. Mater. Sci. 212, 1867 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J. Brosi, C. Koos, L.C. Andreani, M. Waldow, J. Leuthold, W. Freude, Opt. Express 16, 4177 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    I. Glesk, P.J. Bock, P. Cheben, J.H. Schmid, J. Lapointe, S. Janz, Opt. Express 19, 14031 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    G. Boudebs, F. Sanchez, C. Duverger, B. Boulard, Opt. Commun. 199, 257 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    S. Jeyaram, T. Geethakrishnan, Opt. Laser Technol. 89, 179 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    J. Yang, Y. Song, J. Gu, H. Zheng, Opt. Commun. 282, 122 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    T. Cassano, R. Tommasi, M. Ferrara, F. Babudri, G.M. Farinola, F. Naso, Chem. Phys. 272, 111 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    L. Pálfalvi, B.C. Tóth, G. Almási, J.A. Fülöp, J. Hebling, Appl. Phys. B Lasers Opt. 97, 679 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A. Samoc, J. Appl. Phys. 94, 6167 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    H. Cabrera, A. Marcano, Y. Castellanos, Condens. Matter Phys. 9, 385 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations