Skip to main content
Log in

Z-scan study of the thermo-optical effect

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In the case of cw Gaussian illumination, the thermo-optical n2 cannot be characterised by a constant value. It is shown that, if absorption has both linear and nonlinear contributions, the thermo-optical n2 consists of a position- and power-dependent term. Hence analytical formulae that assume a constant n2 are no longer valid for the Z-scan fitting. In this paper a new Z-scan theory is introduced, which is applicable to the thermo-optical effect in the presence of both linear and nonlinear absorption and an arbitrary extent of optical nonlinearity. The calculation technique can be used for large sample thickness too, by dividing it into thin slices. It was found that inside one slice, the distribution of the light-induced refraction is similar to that for the case of graded index media. The propagation can be described through the transformation of the q-parameter. It is demonstrated that the Z-scan technique makes the sensitive measurement of the linear absorption coefficient possible. The linear and nonlinear absorption coefficients were experimentally determined for Mg doped LiNbO3 to be α=0.6 m-1 and β=2.9×10-9 m/W, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland: IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  2. J.A. Hermann, R.G. McDuff: J. Opt. Soc. Am. B 10, 2056 (1993)

    Article  ADS  Google Scholar 

  3. C.H. Kwak, Y.L. Lee, S.G. Kym: J. Opt. Soc. Am. B 16, 600 (1999)

    Article  ADS  Google Scholar 

  4. P.P. Banerjee, R.M. Mirsa, M. Maghraoui: J. Opt. Soc. Am. B 8, 1072 (1991)

    Article  ADS  Google Scholar 

  5. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, V. Giannetas: Appl. Phys. B 76, 83 (2003)

    Article  ADS  Google Scholar 

  6. M. Sheik-Bahae, A.A. Said, D.J. Hagan, M.J. Solileasu, E.W. Van Stryland: Opt. Eng. 30, 1228 (1991)

    Article  ADS  Google Scholar 

  7. H. Li, F. Zhou, X. Zhang, W. Ji: Appl. Phys. B 64, 659 (1997)

    Article  ADS  Google Scholar 

  8. J.T. Verdeyen: Laser Electronics (Prentice Hall, NJ 1995)

  9. J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P. Porto, J.R. Whinnery:J. Appl. Phys. 36, 3 (1965)

    Article  ADS  Google Scholar 

  10. L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár: J. Opt. A: Pure Appl. Opt. 5, S280 (2003)

  11. L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, K. Polgár: Appl. Phys. Lett. 80, 2245 (2002)

    Article  ADS  Google Scholar 

  12. SNLO nonlinear optics code available from A.V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423

  13. U. Schlarb, K. Betzler: Phys. Rev. B 48, 15613 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pálfalvi.

Additional information

PACS

42.79.Ry; 78.20.Nv; 77.84.Dy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pálfalvi, L., Hebling, J. Z-scan study of the thermo-optical effect. Appl. Phys. B 78, 775–780 (2004). https://doi.org/10.1007/s00340-004-1501-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1501-y

Keywords

Navigation