Skip to main content
Log in

High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The denoising capabilities of the H-matrix and cyclic S-matrix based on the sparse reconstruction, employed in the Pixel of Focal Plane Coded Visible Spectrometer for spectrum measurement are investigated, where the spectrum is sparse in a known basis. In the measurement process, the digital micromirror device plays an important role, which implements the Hadamard coding. In contrast with Hadamard transform spectrometry, based on the shift invariability, this spectrometer may have the advantage of a high efficiency. Simulations and experiments show that the nonlinear solution with a sparse reconstruction has a better signal-to-noise ratio than the linear solution and the H-matrix outperforms the cyclic S-matrix whether the reconstruction method is nonlinear or linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.J. Moses, J.H. Bowles, R.L. Lucke, M.R. Corson, Impact of signal-to-noise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters. Opt. Express 20(4), 4309–4330 (2012)

    Article  ADS  Google Scholar 

  2. A.A. Wagadarikar, M.E. Gehm, D.J. Brady, Performance comparison of aperture codes for multimodal, multiplex spectroscopy. Appl. Opt. 46(22), 4932–4942 (2007)

    Article  ADS  Google Scholar 

  3. B.H. Clowers, W.F. Siems, H.H. Hill, S.M. Massick, Hadamard transform ion mobility spectrometry. Anal. Chem. 78(13), 44–51 (2006)

    Article  Google Scholar 

  4. D.C. Tilotta, R.M. Hammaker, W.G. Fateley, Multiplex advantage in Hadamard transform spectrometry utilizing solid-state encoding masks with uniform, bistable optical transmission defects. Appl. Opt. 26(19), 4285–4292 (1987)

    Article  ADS  Google Scholar 

  5. A. Wuttig, Optimal transformations for optical multiplex measurements in the presence of photon noise. Appl. Opt. 44, 2710–2719 (2005)

    Article  ADS  Google Scholar 

  6. M. Harwit, N.J.A. Sloane, Hadamard transform optics (Academic Press, New York, 1979)

    MATH  Google Scholar 

  7. J. Yue, J. Han, Y. Zhang, L. Bai, Denoising analysis of Hadamard transform spectrometry. Opt. Lett. 39(13), 3744–3747 (2014)

    Article  ADS  Google Scholar 

  8. S.B. Mende, E.S. Claflin, R.L. Rairden, G.R. Swenson, Hadamard spectroscopy with a two-dimensional detecting array. Appl. Opt. 32(34), 7095–7105 (1993)

    Article  ADS  Google Scholar 

  9. M. Mishali, Y.C. Eldar, From theory topractice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Top. Process. 4(2), 375–391 (2010)

    Article  Google Scholar 

  10. J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Shechtman, S. Gazit, A. Szameit, Y.C. Eldar, M. Segev, Super-resolution and reconstruction of sparse images carried by incoherent light. Opt. Lett. 35(8), 1148–1150 (2010)

    Article  ADS  Google Scholar 

  12. A. Mrozack, D.L. Marks, D.J. Brady, Coded aperture spectroscopy with denoising through sparsity. Opt. Express 20(3), 2297–2309 (2012)

    Article  ADS  Google Scholar 

  13. L. Streeter, G.R. Burling-Claridge, M.J. Cree, R. Künnemeyer, Optical full Hadamard matrix multiplexing and noise effects. Appl. Opt. 48(11), 2078–2085 (2009)

    Article  ADS  Google Scholar 

  14. F. Soldevila, E. Irles, V. Durán, P. Clemente et al., Single-pixel polarimetric imaging spectrometer by compressive sensing. Appl. Phys. B 113, 551–558 (2013)

    Article  ADS  Google Scholar 

  15. J. Yue, J. Han, L. Li, L. Bai, Denoising analysis of spatial pixel multiplex coded spectrometer with Hadamard H-matrix. Opt. Commun. 407, 355–360 (2018). https://doi.org/10.1016/j.optcom.2017.09.072

    Article  ADS  Google Scholar 

  16. T.T. Cai, L. Wang, Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 53(12), 93–100 (2010)

    Article  MATH  Google Scholar 

  18. J. Yue, J. Han, Y. Zhang, L. Bai, High-throughput deconvolution-resolved computational spectrometer. Chin. Opt. Lett. 12(4), 043001 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 61601225), the Natural Science Foundation of Jiangsu Province (Grant no. BK20151482) and the Fundamental Research Funds for the Central Universities (30915011335). We acknowledge the advice from and discussions with Professor Wenquan Che, Department of Communication Engineering, Nanjing University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yue, J., Han, J. et al. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction. Appl. Phys. B 123, 277 (2017). https://doi.org/10.1007/s00340-017-6854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6854-0

Navigation