Skip to main content
Log in

Single-pixel polarimetric imaging spectrometer by compressive sensing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present an optical system that performs polarimetric spectral imaging with a detector with no spatial resolution. This fact is possible by applying the theory of compressive sampling to the data acquired by a sensor composed of an analyzer followed by a commercial fiber spectrometer. The key element in the measurement process is a digital micromirror device, which sequentially generates a set of intensity light patterns to sample the object image. For different configurations of the analyzer, we obtain polarimetric images that provide information about the spatial distribution of light polarization at several spectral channels. Experimental results for colorful objects are presented in a spectral range that covers the visible spectrum and a part of the NIR range. The performance of the proposed technique is discussed in detail, and further improvements are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.G. Sellar, G.D. Boreman, Classification of imaging spectrometers for remote sensing applications. Opt. Eng. 44(1), 013602 (2005)

    Article  ADS  Google Scholar 

  2. K.L. Coulson, Effects of reflection properties of natural surfaces in aerial reconnaissance. Appl. Opt. 5, 905–917 (1966)

    Article  ADS  Google Scholar 

  3. V.C. Vanderbilt, L. Grant, L.L. Biehl, B.F. Robinson, Specular, diffuse, and polarized light scattered by two wheat canopies. Appl. Opt. 24, 2408–2418 (1985)

    Article  ADS  Google Scholar 

  4. S.M. Haugland, E. Bahar, A.H. Carrieri, Identification of contaminant coatings over rough surfaces using polarized infrared scattering. Appl. Opt. 31, 3847–3852 (1992)

    Article  ADS  Google Scholar 

  5. A. Pierangelo, A. Benali, M-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt. Express 19, 1582–1593 (2011)

    Google Scholar 

  6. Y. Zhao, L. Zhang, Q. Pan, Spectropolarimetric imaging for pathological analysis of skin. Appl. Opt. 48, D236–D246 (2009)

    Article  ADS  Google Scholar 

  7. W. Groner, J.W. Winkelman, A.G. Harris, C. Ince, G.J. Bouma, K. Messmer, R.G. Nadeau, Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat. Med. 5, 1209–1213 (1999)

    Article  Google Scholar 

  8. N. Gupta, D.R. Suhre, Acousto-optic tunable filter imaging spectrometer with full Stokes polarimetric capability. Appl. Opt. 46, 2632–2637 (2007)

    Article  ADS  Google Scholar 

  9. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 21–30 (2008)

    Article  ADS  Google Scholar 

  10. M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, R.G. Baraniuk, Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008)

    Article  ADS  Google Scholar 

  11. F. Magalhaes, F.M. Araújo, M.V. Correia, M. Abolbashari, F. Farahi, Active illumination single-pixel camera based on compressive sensing. Appl. Opt. 50, 405–414 (2011)

    Article  Google Scholar 

  12. W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R.G. Baraniuk, D.M. Mittleman, A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008)

    Article  ADS  Google Scholar 

  13. T. Sun, K. Kelly, Compressive Sensing Hyperspectral Imager, Computational Optical Sensing and Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009)

  14. Y. Wu, I.O. Mirza, G.R. Arce, D.W. Prather, Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. Opt. Lett. 36, 2692–2694 (2011)

    Article  ADS  Google Scholar 

  15. V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, J. Lancis, Single-pixel polarimetric imaging. Opt. Lett. 37, 824–826 (2012)

    Article  ADS  Google Scholar 

  16. V. Studer, J. Bobin, M. Chahid, S.H. Shams Mousavi, E. Candès, M. Dahan, Compressive fluorescence microscopy for biological and hyperspectral imaging. PNAS 109, E1679–E1687 (2012)

    Article  ADS  Google Scholar 

  17. J. Sampsell, An overview of the digital micromirror device (DMD) and its application to projection displays, SID Int. Symp. Digest of Technical Papers 24, 1012 (1993)

  18. W.K. Pratt, J. Kane, H.C. Andrews, Hadamard transform image coding. Proc. IEEE 57, 58–67 (1969)

    Article  Google Scholar 

  19. http://users.ece.gatech.edu/~justin/l1magic

  20. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007)

    Article  ADS  Google Scholar 

  21. W. K. Pratt, Digital Image Processing, 4th edn. (Wiley, 2007)

  22. J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, V. Durán-Bosch, Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter. Rev. Sci. Instr. 77, 073108 (2006)

    Article  ADS  Google Scholar 

  23. Z. Xiaobo, S. Jiyong, H. Limin, Z. Jiewen, M. Hanpin, C. Zhenwei, L. Yanxiao, M. Holmes, In vivo non-invasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging. Anal. Chim. Acta 706, 105–112 (2011)

    Article  Google Scholar 

  24. http://www.mathworks.com/matlabcentral/fileexchange/7021-spectral-and-xyz-color-functions

  25. K.J. Zuzak, M.D. Schaeberle, E.N. Lewis, I.W. Levin, Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion. Anal. Chem. 74, 2021–2028 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the Spanish Ministry of Education (project FIS2010-15746) and the Excellence Net from the Generalitat Valenciana about Medical Imaging (project ISIC/2012/013). Also funding from Generalitat Valenciana through Prometeo Excellence Programme (project PROMETEO/2012/021) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Durán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldevila, F., Irles, E., Durán, V. et al. Single-pixel polarimetric imaging spectrometer by compressive sensing. Appl. Phys. B 113, 551–558 (2013). https://doi.org/10.1007/s00340-013-5506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5506-2

Keywords

Navigation