Skip to main content
Log in

Controlled synthesis and temperature-dependent spectra of NaYF4:Yb3+, Re3+@NaYF4@SiO2 (RE = Er, Tm) core–shell–shell nanophosphors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The NaYF4 Yb3+, Re3+@NaYF4@SiO2 (RE = Er, Tm) core–shell–shell nanophosphors were synthesized by thermal decomposition of lanthanide trifluoroacetate precursors and subsequent hydrolysis coating process. Structures of resulting nanophosphors are studied by the X-ray diffraction and high-resolution transmission electron microscopy. Temperature-dependent photoluminescence spectra, thermal quenching ratios, fluorescence intensity ratios, and temperature sensitivity of resulting nanoparticles are studied in the temperature range from 298 to 623 K. The results suggest that the NaYF4:Yb3+, Er3+@NaYF4@SiO2 is a suitable candidate for making a low temperature sensor up to 450 K with a maximum sensitivity of 24 × 10−4 K−1, and the NaYF4:Yb3+, Tm3+@NaYF4@SiO2 is an excellent candidate for temperature sensors at high temperature. This work presents a new method to use the fluoride nanocrystals as the optical thermometry at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.Y. Huang, J. Lin, J. Mater. Chem. C 3, 7652 (2015)

    Article  Google Scholar 

  2. S. Gai, C. Li, P. Yang, J. Lin, Chem. Rev 114, 2343–2389 (2014)

    Article  Google Scholar 

  3. J. Boyer, F. Vetrone, L.A. Cuccia, J.A. Capobianco, J. Am. Chen. Soc. 128, 7444–7445 (2006)

    Article  Google Scholar 

  4. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X.G. Liu, Nature 463, 1061–1065 (2010)

    Article  ADS  Google Scholar 

  5. M.Y. Ding, D.Q. Chen, Z.Y. Wan, Y. Zhou, J.S. Zhong, J.H. Xi, Z.G. Ji, J. Mater. Chem. C 3, 5372–5376 (2015)

    Article  Google Scholar 

  6. G. Chen, T.Y. Ohulchanskyy, S. Liu, W.C. Law, F. Wu, M.T. Swihart, H. Agren, N.P. Prasad. ACS Nano 6, 2969–2977 (2012)

    Article  Google Scholar 

  7. Y. Zhou, S.T. Han, X. Chen, F. Wang, Y.B. Tang, V. Rev. Nat. Commun. 5, 1–8 (2014)

    ADS  Google Scholar 

  8. G. Chen, H. Qiu, P.N. Prasad, X. Chen. Chem. Rev 114, 5161–5214 (2014)

    Article  Google Scholar 

  9. D. Jaque, F. Vetrone, Nanoscale 4, 4301–4326 (2012)

    Article  ADS  Google Scholar 

  10. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Milan, V.S. Amaral, F. Palacio, L.D. Carlos, Nanoscale 4, 4799–4829 (2012)

    Article  ADS  Google Scholar 

  11. X.F. Wang, Q. Liu, Y.Y. Bu, C.S. Liu, T. Liu, X.H. Yan, RSC Adv. 5, 86219–86236 (2015)

    Article  Google Scholar 

  12. N. Rakov, G.S. Maciel, Opt. Lett. 39, 3767–3769 (2014)

    Article  ADS  Google Scholar 

  13. X.F. Wang, J. Zheng, Y. Xuan, X.H. Yan, Opt. Express 21(2013), 21596–21606 (2013)

    Article  ADS  Google Scholar 

  14. W. Xu, Z.G. Zhang, W.W. Cao, Opt. Lett. 37, 4865–4867 (2012)

    Article  ADS  Google Scholar 

  15. X.F. Wang, Q. Liu, P.Q. Cai, J. Wang, L. Qin, T. Vu, H.J. Seo, Opt. Express 24, 17792–17804 (2016)

    Article  ADS  Google Scholar 

  16. G.Y. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Agren, P.N. Prasad, G. Han, ACS Nano 6, 8280–8287 (2012)

    Article  Google Scholar 

  17. X.F. Wang, T.T. Xu, P.Q. Cai, T. Vu, H.J. Seo, J. Alloys Compd. 691, 530–536 (2017)

    Article  Google Scholar 

  18. J.F. Suyver, J. Grimm, M.K. Veen, D. Biner, K.W. Kramer, H.U. Gudel. J. Lumin. 117, 1–12 (2006)

    Article  Google Scholar 

  19. R.B. Anderson, S.J. Smith, P.S. May, M.T. Berry, J. Phys. Chem. Lett. 5, 36–42 (2014)

    Article  Google Scholar 

  20. S. Schietinger, T. Aichele, H.Q. Wang, T. Nann, O. Benson, Nano Lett. 10, 134–138 (2010)

    Article  ADS  Google Scholar 

  21. X.M. Liu, J.W. Zhao, Y.J. Sun, K. Song, Y. Yu, C. Du, X.G. Kong, H. Zhang, Chem. Commun. 6628–6630 (2009)

  22. G.Y. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Ågren, P.N. Prasad, ACS Nano 4, 3163–3168 (2010)

    Article  Google Scholar 

  23. S. Jeong, N. Won, J. Lee, J. Bang, J. Yoo, S.G. Kim, J.A. Chang, J. Kim, S. Kim, Chem. Commun. 47, 8022–8024 (2011)

    Article  Google Scholar 

  24. S.S. Zhou, G.C. Jiang, X.Y. Li, S. Jiang, X.T. Wei, Y.H. Chen, M. Yin, C.K. Duan, Opt. Lett. 39, 6687–6690 (2014)

    Article  ADS  Google Scholar 

  25. S. Jiang, P. Zeng, L.Q. Liao, S.F. Tian, H. Guo, Y.H. Chen, C.K. Duan, M. Yin, J. Alloy Compd. 617 (2014) 538–541

    Article  Google Scholar 

  26. M. Darbandia, T. Nann, Chem. Commun. 776–778 (2006)

  27. KZ. Zheng, Z.Y. Liu, Y. Liu, W.Y. Song, W.P. Qin, J. Appl. Phys. 114, 183109 (2013)

    Article  ADS  Google Scholar 

  28. M. Fujii, T. Nakano, K. Imakita, S. Hayashi, J. Phys. Chem. C 117, 1113–1120 (2013)

    Article  Google Scholar 

  29. J. Shen, G.Y. Chen, T.Y. Ohulchanskyy, S.J. Kesseli, S. Buchholz, Z.P. Li, P.N. Prasad, G. Han, Small 9, 3213–3217 (2013)

    Article  Google Scholar 

  30. Y. Wang, K. Liu, X.M. Liu, K. Dohnalová, T. Gregorkiewicz, X.G. Kong, M.C.G. Aalders, W.J. Buma, H. Zhang, J. Phys. Chem. Lett 2, 2083–2088 (2011)

    Article  Google Scholar 

  31. W.R. Liu, C.H. Huang, C.P. Wu, Y.C. Chiu, Y.T. Yeh, T.M. Chen, J. Mater. Chem 21, 6869–6874 (2011)

    Article  Google Scholar 

  32. D. He, C.F. Guo, S. Jiang, N.M. Zhang, C.K. Duan, M. Yin, T. Li, RSC Adv. 5 (2015) 1385–1390

    Article  Google Scholar 

  33. D.Q. Chen, Z.Y. Wan, Y. Zhou, X.Z. Zhou, Y.L. Yu, J.S. Zhong, M.Y. Ding, Z.G. Ji, ACS Appl. Mater. Interfaces 7, 19484–19493 (2015)

    Article  Google Scholar 

  34. S.A. Wade, S.F. Collins, G.W. Baxter, J. Appl. Phys 94, 4743–4756 (2003)

    Article  ADS  Google Scholar 

  35. C.Z. Zhao, et al., Nanoscale 5, 8084 (2013)

    Article  ADS  Google Scholar 

  36. G. Tian, et al., Adv. Mater. 24, 1226 (2012)

    Article  Google Scholar 

  37. W. Xu, X. Y. Gao, L.J. Zheng, Z.G. Zhang, W.W. Cao, Sens. Actuators B 173, 250–253 (2012)

    Article  Google Scholar 

  38. P. Du, L.H. Luo, W.P. Li, Q.Y. Yue, H.B. Chen, Appl. Phys. Lett. 104, 152902 (2014)

    Article  ADS  Google Scholar 

  39. G.C. Jiang, S.S. Zhou, X.T. Wei, Y.H. Chen, C.K. Duan, M. Yin, B. Yang, W.W. Cao, RSC Adv. 6, 11795–11801 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11374162, 51651202), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (TJ215009), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY215174).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Y. Bu or X. H. Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y.Y., Yan, X.H. Controlled synthesis and temperature-dependent spectra of NaYF4:Yb3+, Re3+@NaYF4@SiO2 (RE = Er, Tm) core–shell–shell nanophosphors. Appl. Phys. B 123, 59 (2017). https://doi.org/10.1007/s00340-016-6633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6633-3

Keywords

Navigation