Skip to main content
Log in

UV absorption and fluorescence properties of gas-phase p-difluorobenzene

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

1,4-Difluorobenzene (p-DFB) is a promising aromatic tracer for determining concentration, temperature, and O2 partial pressure in mixing gas flows based on laser-induced fluorescence (LIF). Signal quantification requires the knowledge of absorption and fluorescence properties as a function of environmental conditions. We report absorption and fluorescence spectra as well as fluorescence lifetimes of p-DFB in the temperature, pressure, and oxygen partial pressure range that is relevant for many applications including internal combustion engines. The UV absorption cross section, investigated between 296 and 675 K, has a peak value close to 266 nm and decreases with temperature, while still exceeding other single-ring aromatics. Time-resolved fluorescence spectra were recorded after picosecond laser excitation at 266 nm as a function of temperature (296–1180 K), pressure (1–10 bar), and O2 partial pressure (0–210 mbar) using a streak camera (temporal resolution 50 ps) coupled to a spectrometer. The fluorescence spectra red-shift (~2 nm/100 K) and broaden (increase in full width at half maximum by 58% in the investigated temperature range) with temperature. In N2 as bath gas (1 bar), the fluorescence lifetime τ eff decreases with temperature by a factor of about 20 (from 7 ns at 298 K down to 0.32 ns at 1180 K), while at 8 bar the shortest lifetime at 975 K is 0.4 ns. A noticeable pressure dependence (i.e., reduced τ eff) is only visible at 675 K and above. Quenching of p-DFB LIF by O2 (for partial pressures up to 210 mbar) shortens the fluorescence lifetime significantly at room temperature (by a factor of 8), but much less at higher temperatures (by a factor of 1.8 at 970 K). For fixed O2 partial pressures (52 mbar and above), τ eff shows a plateau region with temperature which shifts toward higher temperatures at the higher O2 partial pressures. O2 quenching is less prominent for p-DFB compared to other aromatic compounds investigated so far. The temperature dependence of O2 quenching can be approximately expressed by an exponential function. The influence of temperature, total pressure, and O2 partial pressure on absorption cross sections and fluorescence quantum yields are given as empirical functions that allow for interpolation. For typical applications, p-DFB LIF provides up to three orders of magnitude stronger signal compared to toluene LIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  2. C.S. Burton, W.A. Noyes, J. Chem. Phys. 49, 1705 (1968)

    Article  ADS  Google Scholar 

  3. C.G. Hickman, J.R. Gascooke, W.D. Lawrance, J. Chem. Phys. 104, 4887 (1996)

    Article  ADS  Google Scholar 

  4. F.P. Zimmermann, W. Koban, C.M. Roth, D.-P. Herten, C. Schulz, Chem. Phys. Lett. 426, 248 (2006)

    Article  ADS  Google Scholar 

  5. E. Friesen, C. Gessenhardt, S. Kaiser, T. Dreier, C. Schulz, In-cylinder temperature measurements via fiber-based toluene-LIF time-correlated single-photon counting (LACSEA2012, San Diego, CA, USA, 2012)

  6. M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B. 91, 669 (2008)

    Article  ADS  Google Scholar 

  7. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  8. S. Faust, T. Dreier, C. Schulz, Chem. Phys. 383, 6 (2011)

    Article  ADS  Google Scholar 

  9. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)

    Article  ADS  Google Scholar 

  10. S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B 110, 81 (2013)

    Article  ADS  Google Scholar 

  11. W. Koban, C. Schulz: SAE technical paper series 2005-01-2091, 2005 (2005)

  12. L.M. Itani, G. Bruneaux, A. Di Lella, C. Schulz, Proc. Combust. Inst. 35, 2915 (2015)

    Article  Google Scholar 

  13. J.M. Hollas, T. Cvitas, Mol. Phys. 18, 793 (1970)

    Article  ADS  Google Scholar 

  14. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)

    Book  Google Scholar 

  15. M.G. Rockley, J. Metcalfe, D. Phillips, J. Chem. Soc. Faraday Trans. 2(70), 1660 (1974)

    Google Scholar 

  16. S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 30, 1555 (2005)

    Article  Google Scholar 

  17. M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 102, 163 (2011)

    Article  ADS  Google Scholar 

  18. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)

    Article  ADS  Google Scholar 

  19. W. Koban, J. Schorr, C. Schulz, Appl. Phys. B 74, 111 (2002)

    Article  ADS  Google Scholar 

  20. R. Devillers, G. Bruneaux, C. Schulz, Appl. Phys. B 96, 735 (2009)

    Article  ADS  Google Scholar 

  21. D. Fuhrmann, T. Benzler, S. Fernando, T. Endres, T. Dreier, S. A. Kaiser, C. Schulz: Proc. Combust. Inst. 36 (2016). doi:10.1016/j.proci.2016.06.045

  22. T.B. Settersten, A. Dreizler, R.L. Farrow, J. Chem. Phys. 117, 3173 (2002)

    Article  ADS  Google Scholar 

  23. T.B. Settersten, B.D. Patterson, J.A. Gray, J. Chem. Phys. 124, 234308 (2006)

    Article  ADS  Google Scholar 

  24. E.K.C. Lee, L.J. Volk, J. Chem. Phys. 67, 236 (1977)

    Article  ADS  Google Scholar 

  25. S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 112, 203 (2013)

    Article  ADS  Google Scholar 

  26. T. Benzler, S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 121, 549 (2015)

    Article  ADS  Google Scholar 

  27. Y. He, E. Pollak, J. Chem. Phys. 116, 6088 (2002)

    Article  ADS  Google Scholar 

  28. H. Wadi, E. Pollak, J. Chem. Phys. 110, 11890 (1999)

    Article  ADS  Google Scholar 

  29. R.A. Coveleskie, D.A. Dolson, C.S. Parmenter, J. Phys. Chem. 89, 645 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding of this work by the Deutsche Forschungsgemeinschaft (DFG) within SCHU 1369/28. The authors also acknowledge valuable discussions with Björn Rossow (Université de Rouen) on DFB absorption cross sections and fluorescence spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Benzler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzler, T., Dreier, T. & Schulz, C. UV absorption and fluorescence properties of gas-phase p-difluorobenzene. Appl. Phys. B 123, 39 (2017). https://doi.org/10.1007/s00340-016-6612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6612-8

Keywords

Navigation