Skip to main content
Log in

Spatial–temporal gain distribution of a CuBr vapor brightness amplifier

  • Published:
Applied Physics B Aims and scope Submit manuscript

An Erratum to this article was published on 27 February 2017

Abstract

The paper presents the results of study of the radial distribution of radiation inside the copper bromide vapor amplifiers depending on the time of return of their own reflected radiation. This technique allows us to estimate the changes of the gain profile during the lasing pulse. The profile distribution which is close to the Gaussian’s one is as follows for the first 7–12 ns without the addition of HBr and up to 18 ns with HBr. By the end of the lasing pulse, the profile becomes ring-shaped. The results from this study indicate that the inversion in the center of the beam disappears earlier than at the periphery. This is equally true for both the green lasing line (510.6 nm) and the yellow one (578.2 nm). The radiation profile can be flattened partially by introducing the active HBr doping, but it does not provide a uniform profile throughout the lasing pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.M. Batenin, I.I. Klimovsky, L.A. Selezneva, Sov. Phys. Dokl. 33, 949 (1988)

    ADS  Google Scholar 

  2. R.O. Buzhinsky, V.V. Savransky, K.I. Zemskov, A.A. Isaev, O.I. Buzhinsky, Plasma Phys. Rep. 36, 1269 (2010)

    Article  ADS  Google Scholar 

  3. V.M. Yermachenko, A.P. Kuznetsov, V.N. Petrovskiy, N.M. Prokopova, A.P. Streltsov, S.A. Uspenskiy, Laser Phys. 21, 1530 (2011)

    Article  Google Scholar 

  4. D.V. Abramov, S.M. Arakelyan, A.F. Galkin, I.I. Klimovskii, A.O. Kucherik, V.G. Prokoshev, Quantum Electron. 36, 569 (2006)

    Article  ADS  Google Scholar 

  5. D.V. Rybka, M.V. Trigub, D.A. Sorokin, G.S. Evtushenko, V.F. Tarasenko, Atmos. Ocean. Opt. 27, 582 (2014)

    Article  Google Scholar 

  6. A.P. Il’in, A.V. Mostovshchikov, L.O. Root, Tech. Phys. Lett. 37, 965 (2011)

    Article  ADS  Google Scholar 

  7. A.P. Il’in, A.V. Mostovshchikov, N.A. Timchenko, Combust. Explos. Shock Waves 49, 320 (2013)

    Article  Google Scholar 

  8. A.I. Kirdyashkin, R.A. Yusupov, YuM Maksimov, V.D. Kitler, Combust. Explos. Shock Waves 38, 566 (2002)

    Article  Google Scholar 

  9. K.I. Zemskov, A.A. Isaev, M.A. Kazaryan, G.G. Petrash, Sov. J. Quantum Electron. 4, 5 (1974)

    Article  ADS  Google Scholar 

  10. K.I. Zemskov, M.A. Kazaryan, V.M. Matveev, G.G. Petrash, M.P. Samsonova, A.S. Skripnichenko, Sov. J. Quantum Electron. 14, 288 (1984)

    Article  ADS  Google Scholar 

  11. D.N. Astadjov, N.K. Vuchkov, K.I. Zemskov, A.A. Isaev, M.A. Kazaryan, G.G. Petrash, N.V. Sabotinov, Sov. J. Quantum Electron. 15, 457 (1988)

    Article  ADS  Google Scholar 

  12. G.G. Petrash (ed.), Optical Systems with Brightness Amplifiers (Nauka, Moscow, 1991)

    Google Scholar 

  13. Z. Xiao, G. Zhang, F. Lin, Appl. Opt. 31, 3395 (1992)

    Article  ADS  Google Scholar 

  14. M.V. Trigub, N.A. Agapov, G.S. Evtushenko, F.A. Gubarev, Russ. Phys. J. 56, 588 (2013)

    Article  Google Scholar 

  15. F.A. Gubarev, G.S. Evtushenko, M.V. Trigub, D.V. Shiyanov, S.N. Torgaev, in 11 European Conference on Non-Destructive Testing (ECNDT 2014) (European Federation for NDT, Czech Society for NDT, 2014), p. 41

  16. G.S. Evtushenko, M.V. Trigub, F.A. Gubarev, T.G. Evtushenko, S.N. Torgaev, D.V. Shiyanov, Rev. Sci. Instrum. 85, 033111 (2014)

    Article  ADS  Google Scholar 

  17. F.A. Gubarev, L. Li, M.S. Klenovskii, IOP Conf. Ser. Mater. Sci. Eng. 124, 012016 (2016)

    Article  Google Scholar 

  18. F.A. Gubarev, M.S. Klenovskii, L. Li, IOP Conf. Ser. Mater. Sci. Eng. 81, 012116 (2015)

    Article  Google Scholar 

  19. F.A. Gubarev, M.V. Trigub, M.S. Klenovskii, L. Li, G.S. Evtushenko, Appl. Phys. B Laser Opt. 122, 1 (2016)

    Article  ADS  Google Scholar 

  20. D.N. Astadjov, N.V. Sabotinov, N.K. Vuchkov, Opt. Commun. 56, 279 (1985)

    Article  ADS  Google Scholar 

  21. G.N. Tiwari, P.K. Shukla, R.K. Mishra, V.K. Shrivastava, R. Khare, S.V. Nakhe, Opt. Commun. 338, 322 (2015)

    Article  ADS  Google Scholar 

  22. G.N. Tiwari, R.K. Mishra, R. Khare, S.V. Nakhe, Pramana J. Phys. 82, 217 (2014)

    Article  ADS  Google Scholar 

  23. S.N. Torgaev, A.M. Boichenko, G.S. Evtushenko, D.V. Shiyanov, Russ. Phys. J. 55, 1039 (2013)

    Article  Google Scholar 

  24. N.A. Yudin, V.B. Sukhanov, F.A. Gubarev, G.S. Evtushenko, Quantum Electron. 38, 23 (2008)

    Article  ADS  Google Scholar 

  25. F.A. Gubarev, D.V. Shiyanov, V.B. Sukhanov, G.S. Evtushenko, IEEE J. Quant. Electron. 49, 89–94 (2013)

    Article  ADS  Google Scholar 

  26. V.B. Sukhanov, V.F. Fedorov, F.A. Gubarev, V.O. Troitskiy, G.S. Evtushenko, Quantum Electron. 37, 603 (2007)

    Article  ADS  Google Scholar 

  27. G.S. Evtushenko, D.V. Shiyanov, F.A. Gubarev, Metal Vapour Lasers with High Pulse Repetition Rates (Izd. Tomskogo Politekhnicheskogo Univers., Tomsk, 2010)

    Google Scholar 

  28. D.W. Coutts, D.J.W. Brown, Appl. Opt. 34, 1502 (1995)

    Article  ADS  Google Scholar 

  29. D.N. Astadjov, S.V. Nakhe, J. Phys. Conf. Ser. 253, 012076 (2010)

    Article  Google Scholar 

  30. D. Astadjov, L. Stoychev, N. Sabotinov, Opt. Quant. Electron. 39, 603 (2007)

    Article  Google Scholar 

  31. O.I. Buzhinskij, N.N. Vasiliev, A.I. Moshkunov, L.A. Slivitskaya, A.A. Slivitsky, Fusion Eng. Des. 60, 141 (2002)

    Article  Google Scholar 

  32. O.I. Buzhinskij, V.G. Otroshchenko, A.A. Slivitsky, I.A. Slivitskaya, Plasma Devices Oper. 11, 155 (2003)

    Article  Google Scholar 

  33. F.A. Gubarev, V.F. Fedorov, K.V. Fedorov, D.V. Shiyanov, G.S. Evtushenko, Quantum Electron. 46, 57 (2016)

    Article  ADS  Google Scholar 

  34. G. Evtushenko, M. Trigub, S. Torgaev, T. Evtushenko, in 7th International Conference on Sensors and Signals (SENSIG’15) (WSEAS, Budapest, 2015), p. 141

  35. D.V. Shiyanov, G.S. Evtushenko, V.B. Sukhanov, V.F. Fedorov, Quantum Electron. 37, 49 (2007)

    Article  ADS  Google Scholar 

  36. A.G. Filonov, D.V. Shiyanov, Instrum. Exp. Tech. 56, 349 (2013)

    Article  Google Scholar 

  37. F.A. Gubarev, G.S. Evtushenko, N.K. Vuchkov, V.B. Sukhanov, D.V. Shiyanov, Rev. Sci. Instrum. 83, 055111 (2012)

    Article  ADS  Google Scholar 

  38. F.A. Gubarev, M.V. Trigub, G.S. Evtushenko, K.V. Fedorov, Atm. Ocean. Opt. 26, 559 (2013)

    Article  Google Scholar 

  39. F.A. Gubarev, V.O. Troitskiy, M.V. Trigub, V.B. Sukhanov, Opt. Commun. 284, 2565 (2011)

    Article  ADS  Google Scholar 

  40. V.A. Dimaki, V.B. Sukhanov, V.O. Troitskii, A.G. Filonov, Instrum. Exp. Tech. 55, 696 (2012)

    Article  Google Scholar 

  41. G.S. Evtushenko, VYu. Kashaev, V.B. Sukhanov, V.V. Tatur, Proc. SPIE 4747, 198 (2002)

    Article  ADS  Google Scholar 

  42. M.J. Withford, D.J.W. Brown, J.A. Piper, Opt. Commun. 110, 699 (1994)

    Article  ADS  Google Scholar 

  43. M.J. Withford, D.J.W. Brown, R.P. Mildren, R.J. Carman, G.D. Marshall, J.A. Piper, Prog. Quantum Electron. 28, 165 (2004)

    Article  ADS  Google Scholar 

  44. M.J. Withford, D.J.W. Brown, R.J. Carman, J.A. Piper, Opt. Commun. 154, 160 (1998)

    Article  ADS  Google Scholar 

  45. R.J. Carman, R.P. Mildren, M.J. Withford, D.J.W. Brown, J.A. Piper, IEEE J. Quantum Electron. 36, 438 (2000)

    Article  ADS  Google Scholar 

  46. C. Cheng, W. Sun, Opt. Quantum Electron. 28, 405 (1996)

    Article  Google Scholar 

  47. F.A. Gubarev, V.B. Sukhanov, G.S. Evtushenko, V.F. Fedorov, D.V. Shiyanov, IEEE J. Quant. Electron. 45, 171 (2009)

    Article  ADS  Google Scholar 

  48. D.N. Astadjov, A.A. Isaev, G.G. Petrash, I.V. Ponomarev, N.V. Sabotinov, N.K. Vuchkov, IEEE J. Quant. Electron. 28, 1966 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Gubarev.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00340-017-6661-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubarev, F.A., Li, L., Klenovskii, M.S. et al. Spatial–temporal gain distribution of a CuBr vapor brightness amplifier. Appl. Phys. B 122, 284 (2016). https://doi.org/10.1007/s00340-016-6559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6559-9

Keywords

Navigation