Skip to main content
Log in

Investigation of ASE contribution to copper bromide amplifier output signal

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The paper is devoted to research the single-pass operating mode of active element on copper bromide vapors and time dependence of ratio «signal/ASE». The results show how the single-pass radiation power depends on the time delay between ASE pulse and the moment when the input signal enters to the active element. Light waveforms (ASE, input signal, output signal) are recorded at each time delay. The minimal time delay was 5.2 ns, the power radiation in this case was 3.47 W. The radiation power was reducing as the time delay was increased in increments of about 2 ns. The waveforms prove that the active element output signal contains two components: the first—ASE (amplified spontaneous emission), which is formed as result of the active substance atom excitation and their further spontaneous transitions; the second—single-pass radiation amplified by means of the inverse population of the active media. The waveforms allow to estimate the useful signal to noise ratio or other words «signal/ASE». The highest gain is provided with the lowest time delay due to the population inversion is maximum in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3

Similar content being viewed by others

Data availability

The data is available by the request.

References

  • Abramov, D.V., Areklyan, S.M., Galkin, A.F., Kvacheva, L.D., Klimovskij, I.I., Kononov, M.A., Mihalicyn, L.A., Kucherik, A.O., Prokoshev, V.G., Savranskij, V.V.: Melting of carbon heated by focused laser radiation in air at atmospheric pressure and temperature below 4000 K. JETP Lett. 84(5), 258–261 (2006). https://doi.org/10.1134/S0021364006170061

    Article  CAS  Google Scholar 

  • Abrosimov, G.V., Pol’skij, M.M., Saenko, V.B.: Use of a laser medium in photography of a surface shielded by a plasma layer. Sov. J. Quantum Electron. 15(7), 850 (1988). https://doi.org/10.1070/QE1988v018n04ABEH012099

    Article  CAS  Google Scholar 

  • Batenin, V.M., Glina, VYu., Klimovskij, I.I., Seleznev, L.A.: Primenenie opticheskih sistem s usilitelyami yarkosti dlya issledovaniya poverhnostej elektrodov iz grafita i pirografita vo vremya goreniya dugi. High Temp. 29(6), 1204–1210 (1991). (in Russian)

    CAS  Google Scholar 

  • Dimaki, V.A., Sukhanov, V.B., Troitskii, V.O., Filonov, A.G., Shestakov, DYu.: A copper bromide vapor laser with computer control of the repetitive-pulse, train, and waiting operating modes. Instrum. Exp. Tech. 51(6), 890–893 (2008). https://doi.org/10.1134/S0020441208060201

    Article  CAS  Google Scholar 

  • Evtushenko, G.S., Trigub, M.V., Gubarev, F.A., Torgaev, S.N.: Lazernyj proekcionnyj mikroskop s pokadrovoj registraciej izobrazheniya. Izvestiya TPU. 319(4), 154–158 (2011). (in Russian)

    Google Scholar 

  • Gubarev, F.A., Mostovshchikov, A.V., Ilyin, A.P., Li, L., Fedorov, A.I., Burkin, EYu., Sviridov, V.V.: A two-channel laser monitor for observing processes of high-temperature combustion of metal nanopowders. Tech. Phys. Lett. 47(7), 344–347 (2021a). https://doi.org/10.21883/pjtf.2021.07.50798.18593

    Article  CAS  ADS  Google Scholar 

  • Gubarev, F.A., Mostovshchikov, A.V., Ilyin, A.P., Li, L., Burkin, E.Y., Sviridov, V.V.: A laser monitor with independent lighting and brightness amplification for imaging high-temperature combustion of metal nanopowders. Tech. Phys. Lett. 47(8), 372–376 (2021). https://doi.org/10.21883/pjtf.2021.08.50848.18519

    Article  CAS  ADS  Google Scholar 

  • Isakov, B.K., Kalugin, M.M., Parfenov, E.N., Potapov, S.N.: Issledovanie usileniya v aktivnyh sredah na perekhodah atomov medi i marganca primenitel’no k sozdaniyu proekcionnyh sistem s usilitelyami yarkosti izobrazheniya. MTF. 33(4), 704–714 (1983). (in Russian)

    Google Scholar 

  • Kazaryan, M.A., Matveev, V.M., Petrash, G.G.: Proekcionnaya sistema s usilitelem yarkosti i avtonomnym istochnikom osveshcheniya. Izvestiya Akademii Nauk SSSR. Ser. Fiz. 46(10), 1898–1904 (1982). (in Russian)

    Google Scholar 

  • Li, L., Antipov, P.A., Mostovshchikov, A.V., Ilyin, A.P., Gubarev, F.A.: Laser systems for distant monitoring of nanopowder combustion. PIERM 84, 85–93 (2019). https://doi.org/10.2528/PIERM19060103

    Article  CAS  Google Scholar 

  • Li, L., Mostovshchikov, A.V., Ilyin, A.P., Antipov, P.A., Shiyanov, D.V., Gubarev, F.A.: Imaging system with brightness amplification for a metal-nanopowder-combustion study. J. Appl. Phys. 127(19), 194503-1–194503-11 (2020). https://doi.org/10.1063/1.5139508

    Article  CAS  ADS  Google Scholar 

  • Li, L., Mostovshchikov, A.V., Ilyin, A.P., Smirnov, A., Gubarev, F.A.: Optical system with brightness amplification for monitoring the combustion of aluminum-based nanopowders. IEEE Trans. Instrum. Meas. 69(2), 457–468 (2020b). https://doi.org/10.1109/TIM.2019.2903616

    Article  CAS  ADS  Google Scholar 

  • Morozova, E.A., Prohorov, A.M., Savranskij, V.V., Shafeev, G.A.: Skorostnaya pokadrovaya registraciya izobrazhenij biologicheskih ob"ektov s ispol’zovaniem lazernogo proekcionnogo mikroskopa. DAN SSSR. 261(6), 1460–1462 (1981). (in Russian)

    Google Scholar 

  • Musorov, I.S., Evtushenko, G.S.: Skorostnoj usilitel’ yarkosti na parah metallov dlya sistem vizual’nogo kontrolya i diagnostiki. Lasers. Meas. Inf. 2(2), 32–39 (2022). (in Russian)

    Google Scholar 

  • Osipov, V.V., Evtushenko, G.S., Lisenkov, V.V., Platonov, V.V., Podkin, A.V., Tikhonov, E.V., Trigub, M.V., Fedorov, K.V.: Laser plume evolution in the process of nanopowder preparation using an ytterbium fibre laser. Quantum Electron. 46(9), 821–828 (2016). https://doi.org/10.1070/QEL16023

    Article  CAS  ADS  Google Scholar 

  • Saraev, Yu.N., Lunev, A.G., Trigub, M.V., Perovskaya, M.V.: Metodika issledovanij harakteristik teplomassoperenosa pri dugovoj svarke plavyashchimsya elektrodom s video registraciej izobrazhenij v usloviyah lazernogo kogerentnogo izlucheniya. Actual Probl. Mach. Build. 5(1–2), 20–25 (2018a). (in Russian)

    Google Scholar 

  • Saraev, Yu.N., Lunev, A.G., Kiselev, A.S., Gordynets, A.S., Trigub, M.V.: Complex for research of arc welding processes. Avtomaticheskaya svarka (2018). https://doi.org/10.15407/as2018.08.03. (in Russian)

    Article  Google Scholar 

  • Saraev, Y.N., Trigub, M.V., Vasnev, N.A., Semenchuk, V.M., Nepomnyashiy, A.S.: The imaging of the welding processes with the use of CuBr-laser. Proc SPIE Int. Soc. Opt. Eng. (2019). https://doi.org/10.1117/12.2554872

    Article  Google Scholar 

  • Semenov, KYu., Gembukh, P.I., Trigub, M.V.: A small-size CuBr laser with a high-frequency charging unit of a storage capacitor. Instrum. Exp. Tech. (2023). https://doi.org/10.1134/S002044122206015X

    Article  Google Scholar 

  • Shiyanov, D.V., Trigub, M.V., Sokovikov, V.G., Evtushenko, G.S.: MnCl2 laser with pulse repetition frequency up to 125 kHz. Opt. Laser Technol. (2020). https://doi.org/10.1016/j.optlastec.2020.106302

    Article  Google Scholar 

  • Suhanov, V.B., Tatur, V.V.: Ekspluatacionnye harakteristiki CuBr–lazera s tranzistornym kommutatorom. Izvestiya TPU. 312(2), 108–110 (2008). (in Russian)

    Google Scholar 

  • Torgaev, S.N., Ogorodnikov, D.N., Musorov, I.S., Kulagin, A.E., Evtushenko, G.S.: A high-frequency pumping source for metal vapor active media. Instrum. Exp. Tech. 1, 69–74 (2020). https://doi.org/10.1134/S002044122001008X

    Article  Google Scholar 

  • Trigub, M.V., Vasnev, N.A.: Features of imaging formation in a bistatic laser active optics system. Optika Atmosfery i Okeana. 35(12), 1058–1063 (2022). https://doi.org/10.15372/AOO20221214. (in Russian)

    Article  Google Scholar 

  • Trigub, M.V., Ogorodnikov, D.N., Dimaki, V.A.: Study of metal vapor laser power supply with pulsed charging of storage capacitance. Atmos. Ocean. Opt. 27(12), 1112–1115 (2014a). (in Russian)

    Google Scholar 

  • Trigub, M.V., Evtushenko, G.S., Torgaev, S.N., Shiyanov, D.V., Vlasov, V.V.: Vozmozhnosti ispol’zovaniya vysokochastotnyh sistem s usilitelyami yarkosti v diagnostike vysokotemperaturnyh processov. Testing. Diagnostics 13(119), 122 (2014). (in Russian)

    Google Scholar 

  • Trigub, M.V., Platonov, V.V., Fedorov, K.V., Evtushenko, G.S., Osipov, V.V.: CuBr laser for nanopowder production visualization. Atmos. Ocean. Opt. (2016). https://doi.org/10.1134/S1024856016040151

    Article  Google Scholar 

  • Trigub, M.V., Platonov, V.V., Fedorov, K.V., Evtushenko, G.S., Osipov, V.V.: Dynamic of nanopowder production during laser target evaporation. Russ. Phys. J. 59(8), 1235–1241 (2016b). https://doi.org/10.1007/s11182-016-0897-2

    Article  Google Scholar 

  • Trigub, M.V., Platonov, V.V., Evtushenko, G.S., Osipov, V.V., Evtushenko, T.G.: Laser monitors for high-speed imaging of materials modification and production. Vacuum 143, 486–490 (2017). https://doi.org/10.1016/j.vacuum.2017.03.016

    Article  CAS  ADS  Google Scholar 

  • Trigub, M.V., Vasnev, N.A., Evtushenko, G.S.: Bistatic laser monitor for imaging objects and processes. Appl. Phys. b: Lasers Opt. 126(3), 1–7 (2020a). https://doi.org/10.1007/s00340-020-7387-5

    Article  CAS  Google Scholar 

  • Trigub, M.V., Vasnev, N.A., Kitler, V.D., Evtushenko, G.S.: The use of a bistatic laser monitor for high-speed imaging of combustion processes. Atmos. Ocean. Opt. 34(2), 154–159 (2020b). https://doi.org/10.15372/AOO20201210

    Article  Google Scholar 

  • Trigub, M.V., Vasnev, N.A., Evtushenko, G.S.: Operating features of a copper bromide brightness amplifier in the monostatic laser monitor. Opt. Commun. (2021). https://doi.org/10.1016/J.OPTCOM.2020.126486

    Article  Google Scholar 

  • Trigub, M.V., Gembukh, P.I., Semenov, K.Y.: CoolMOS based high-voltage power supply with PRF up to 200 kHz for metal vapor active media excitation. Opt. Quantum Electron. 55(12), 1103 (2023). https://doi.org/10.21203/rs.3.rs-2581334/v1

    Article  Google Scholar 

  • Trigub M.V., Shiyanov D.V., Vlasov V.V.: Brightness amplifiers with PRF up to 100 kHz. In: International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM. (2014) pp 301–304. DOI: https://doi.org/10.1109/EDM.2014.6882534

  • Trigub M.V., Evtushenko G.S., Gubarev F.A., Torgaev S.N.: Lazernyj proekcionnyj mikroskop (varianty). Utility model patent No. 2463634, MPK G02B 21/00, publ. 10.10.2012. Copyright holder: State educational institution of higher professional education “National Research Tomsk Polytechnic University.” (in Russian) (2012)

  • Vasnev, N.A., Trigub, M.V., Evtushenko, G.S.: Imaging by means of the bistatic laser monitor. Proc. SPIE Int. Soc. Opt. Eng. (2019). https://doi.org/10.1117/12.2554686

    Article  Google Scholar 

  • Vasnev N.A., Trigub M.V.: Opredelenie oblasti zreniya i prostranstvennogo razresheniya v bistaticheskoj skheme lazernogo monitora. Sovremennye materialy i tekhnologii novyh pokolenij: Sbornik nauchnyh trudov II Mezhdunarodnogo molodezhnogo kongressa. Pod red. A.N. YAkovleva;. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta. (2019). P. 268–269. (in Russian)

  • Vasnev N.A., Karasev N.V, Trigub M.V.: Semiconductor excitation sources for bistatic laser monitors. In: 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM). (2022). pp 342–347. DOI: https://doi.org/10.1109/EDM55285.2022.9855167

  • Zemskov, K.I., Isaev, A.A., Kazaryan, M.A., Petrash, G.G.: Laser projection microscope. Sov. J. Quantum Electron. 14(1), 14–15 (1974). (in Russian)

    Google Scholar 

  • Zemskov, K.I., Kazaryan, M.A., Savranskij, V.V., Shafeev, G.A.: Transmitted-light laser projection microscope. Sov. J. Quantum Electron. 6(11), 2473–2475 (1979). (in Russian)

    Google Scholar 

Download references

Funding

The study of the amplification features was supported by the Russian Science Foundation, the project No. 19-79-10096-P. The excitation source was made within the framework of the IAO SB RAS base budget, the project FWRU-2021-0006 (121040200025-7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.V.; methodology, M.V. and N.A.; formal analysis, N.A.; resources, M.V.; writing—original draft preparation, N.A.; writing—review and editing, M.V.; visualization, N.A.; supervision, M.V.; project administration, M.V. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. V. Trigub.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasnev, N.A., Trigub, M.V. Investigation of ASE contribution to copper bromide amplifier output signal. Opt Quant Electron 56, 158 (2024). https://doi.org/10.1007/s11082-023-05724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05724-6

Keywords

Navigation