Skip to main content
Log in

Optical lattice gas heating simulation under application of intrapulse frequency chirping

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Direct simulation Monte Carlo was used to investigate the interaction between molecular nitrogen, argon, and methane, initially at 300 K and 0.8 atm, and frequency-chirped, pulsed optical lattices. The simulated optical lattice parameters are consistent with published optical lattice-based experiments to ensure that pulse energies and durations do not exceed optical breakdown (ionization) thresholds. In an effort to maximize optical lattice gas heating, laser pulses were chirped to produce lattice velocities which more effectively facilitate energy deposition throughout the pulse duration. The maximum end pulse translational temperature obtained in nitrogen, argon, and methane was 763, 715, and 1018 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.S. Letokhov, Narrowing of the Doppler width in a standing wave. JETP Lett. 7, 348–351 (1968)

    Google Scholar 

  2. P.F. Barker, M.N. Shneider, Optical microlinear accelerator for molecules and atoms. Phys. Rev. A 64, 033408 (2001)

    Article  ADS  Google Scholar 

  3. M.N. Shneider, S.F. Gimelshein, P.F. Barker, Micropropulsion devices based on molecular acceleration by pulsed optical lattices. J. Appl. Phys. 99, 063102 (2006)

    Article  ADS  Google Scholar 

  4. M.N. Shneider, P.F. Barker, S.F. Gimelshein, Transport in room temperature gases induced by optical lattices. J. Appl. Phys. 100, 074902 (2006)

    Article  ADS  Google Scholar 

  5. B.M. Cornella, S.F. Gimelshein, T.C. Lilly, A.D. Ketsdever, Neutral gas heating via non-resonant optical lattices. Appl. Phys. Lett. 103, 194103 (2013)

    Article  ADS  Google Scholar 

  6. G. Dong, W. Lu, P.F. Barker, M.N. Shneider, Cold molecules in pulsed optical lattices. Prog. Quantum Electron. 29, 1–58 (2005)

    Article  ADS  Google Scholar 

  7. B.M. Cornella, S.F. Gimelshein, M.N. Shneider, T.C. Lilly, A.D. Ketsdever, Experimental and numerical analysis of narrowband coherent Rayleigh-Brillouin scattering in atomic and molecular species. Opt. Express 20, 12975–12986 (2012)

    Article  ADS  Google Scholar 

  8. J. Graul, T. Lilly, Coherent Rayleigh-Brillouin scattering measurement of atmospheric atomic and molecular gas temperature. Opt. Express 22, 20117–20129 (2014)

    Article  ADS  Google Scholar 

  9. X. Pan, P.F. Barker, A. Meschanov, M.N. Shneider, R.B. Miles, Temperature measurements by coherent Rayleigh scattering. Opt. Lett. 27, 161–163 (2002)

    Article  ADS  Google Scholar 

  10. C. Ngalande, S.F. Gimelshein, M.N. Shneider, Energy and momentum deposition from pulsed optical lattices to nonionized gases. Appl. Phys. Lett. 90, 121130 (2007)

    Article  ADS  Google Scholar 

  11. A.A. Shevyrin, M.S. Ivanov, Investigation of the gas optical trapping by non-resonance emission with regard for intermolecular collisions. Thermophys. Aeromech. 14, 373–382 (2007)

    Article  ADS  Google Scholar 

  12. T.C. Lilly, S.F. Gimelshein, A.D. Ketsdever, M.N. Shneider, Energy deposition into a collisional gas from optical lattices formed in an optical cavity, in 26th International Symposium on Rarefied Gas Dynamics, Kyoto, Japan, 2008, pp. 533–538

  13. J.S. Graul, S.F. Gimelshein, T.C. Lilly, Numerical prediction of optical lattice-induced gas heating within multipass optical cavities. Appl. Phys. B 117, 353–361 (2014)

  14. M.N. Shneider, P.F. Barker, Optical landau damping. Phys. Rev. A 71, 053403 (2005)

    Article  ADS  Google Scholar 

  15. J.S. Graul, A.D. Ketsdever, G.P. Andersen, T.C. Lilly, Note: external multipass optical trap for counterpropagating pulsed laser applications. Rev. Sci. Instrum. 84, 076102–076103 (2013)

    Article  ADS  Google Scholar 

  16. N. Coppendale, L. Wang, P. Douglas, P.F. Barker, A high-energy, chirped laser system for optical Stark deceleration. Appl. Phys. B 104, 569–576 (2011)

    Article  ADS  Google Scholar 

  17. T.X. Phuoc, Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases. Opt. Commun. 175, 419–423 (2000)

    Article  ADS  Google Scholar 

  18. R.W. Boyd, Nonlinear Optics, III edn. (Academic, San Diego, 2008)

    Google Scholar 

  19. M.N. Shneider, P.F. Barker, S.F. Gimelshein, Molecular transport in pulsed optical lattices. Appl. Phys. A 89, 337–350 (2007)

    Article  ADS  Google Scholar 

  20. J.S. Graul, B.M. Cornella, A.D. Ketsdever, T.C. Lilly, M.N. Shneider, Experimentally observed field–gas interaction in intense optical lattices. Appl. Phys. Lett. 103, 244106 (2013)

    Article  ADS  Google Scholar 

  21. M.N. Shneider, P.F. Barker, Kinetic description of the field–gas interaction in intense optical lattices. Opt. Commun. 284, 1238–1242 (2011)

    Article  ADS  Google Scholar 

  22. M. Ivanov, A. Kashkovsky, S. Gimelshein, G. Markelov, A. Alexeenko, Y.A. Bondar, et al., SMILE system for 2D/3D DSMC computations, in 25th International Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, 2006, pp. 21–28

  23. M.S. Ivanov, S.F. Gimelshein, Current status and prospects of the DSMC modeling of near-continuum flows of non-reacting and reacting gases, in 23rd International Symposium on Rarefied Gas Dynamics, Whistler, Canada, 2002, pp. 339–348

  24. T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, S. Gimelshein, Gas density perturbations induced by a pulsed optical lattice. Appl. Phys. Lett. 99, 124101 (2011)

    Article  ADS  Google Scholar 

  25. B.M. Cornella, S.F. Gimelshein, T.C. Lilly, A.D. Ketsdever, Coherent Rayleigh–Brillouin scattering in high intensity laser fields, in 28th International Symposium on Rarefied Gas Dynamics, Zaragoza, Aragon, Spain, 2012, pp. 645–652

  26. B.M. Cornella, S.F. Gimelshein, T.C. Lilly, A.D. Ketsdever, Narrowband coherent Rayleigh–Brillouin scattering from gases confined by a high-intensity optical lattice. Phys. Rev. A 87, 033825 (2013)

    Article  ADS  Google Scholar 

  27. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University, New York, 1994)

    Google Scholar 

  28. M.S. Ivanov, A.V. Kashkovsky, S.F. Gimelshein, G.N. Markelov, Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes. Thermophys. Aeromech. 4, 251–268 (1997)

    Google Scholar 

  29. C. Borgnakke, P.S. Larsen, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405–420 (1975)

    Article  ADS  Google Scholar 

  30. C. Maher-McWilliams, P. Douglas, P.F. Barker, Laser-driven acceleration of neutral particles. Nat. Photon. 6, 386–390 (2012)

    Article  ADS  Google Scholar 

  31. D.I. Rosen, G. Weyl, Laser-induced breakdown in nitrogen and the rare gases at 0.53 and 0.357 μm. J. Phys. D Appl. Phys. 20, 1264–1276 (1987)

    Article  ADS  Google Scholar 

  32. C.V. Bindhu, S.S. Harilal, M.S. Tillack, F. Najmabadi, A.C. Gaeris, Energy absorption and propagation in laser-created sparks. Appl. Spectrosc. 58, 719–726 (2004)

    Article  ADS  Google Scholar 

  33. B.M. Cornella, Neutral Gas Heating via Non-Resonant Optical Lattices. Doctor of Philosophy Ph.D. Dissertation, Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO, USA, 2012

  34. D.R. Lide, W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2009)

    Google Scholar 

Download references

Acknowledgments

This work used, in part, the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. This work was also supported, in part, by a grant of computer time from the DoD HPC Modernization Program (HPCMP) at the ERDC DoD Supercomputing Resource Center (DSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taylor C. Lilly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graul, J.S., Gimelshein, S.F. & Lilly, T.C. Optical lattice gas heating simulation under application of intrapulse frequency chirping. Appl. Phys. B 120, 573–579 (2015). https://doi.org/10.1007/s00340-015-6168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6168-z

Keywords

Navigation