Skip to main content
Log in

Electron acceleration to GeV energy by a chirped laser pulse in vacuum in the presence of azimuthal magnetic field

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Electron acceleration by a frequency-chirped circularly polarized (CP) laser pulse in vacuum in the presence of azimuthal magnetic field has been studied. A laser pulse propagating along +z-axis interacts with a pre-accelerated electron injected at a small angle in the direction of propagation of laser pulse in vacuum. The electron is accelerated with high energy in the presence of azimuthal magnetic field till the saturation of betatron resonance. A linear frequency chirp increases the duration of interaction of laser pulse with electron and hence enforces the resonance for longer duration. The presence of azimuthal magnetic field further improves the electron acceleration by keeping the electron motion parallel to the direction of propagation for longer distances. Thus, resonant enhancement appears due to the combined effect of chirped CP laser pulse and azimuthal magnetic field. An electron with few MeV of initial energy gains high energy of the order of GeV. Higher energy gain is obtained with intense chirped laser pulse in the presence of azimuthal magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Malka, E. Lefebvre, J.L. Miquel, Phys. Rev. Lett. 78, 3314 (1997)

    Article  ADS  Google Scholar 

  2. C.G.R. Geddes, C. Toth, J.V. Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  3. S.X. Hu, A.F. Starace, Phys. Rev. E 73, 066502 (2006)

    Article  ADS  Google Scholar 

  4. V. Malka, J. Faure, Y.A. Gauduel, E. Lefebvre, A. Rousse, K.T. Phuoc, Nat. Phys. 4, 447 (2008)

    Article  Google Scholar 

  5. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A.C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, M.C. Downer, Nat. Commun. 4, 1988 (2013)

    ADS  Google Scholar 

  6. W. Yu, V. Bychenkov, Y. Sentoku, M.Y. Yu, Z.M. Sheng, K. Mima, Phys. Rev. Lett. 85, 570 (2000)

    Article  ADS  Google Scholar 

  7. K.P. Singh, J. Appl. Phys. 100, 044907 (2006)

    Article  ADS  Google Scholar 

  8. F. Sohbatzadeh, H. Aku, J. Plasmas Phys. 77, 39 (2011)

    Article  ADS  Google Scholar 

  9. D.N. Gupta, C.M. Ryu, Phys. Plasmas 12, 053103 (2005)

    Article  ADS  Google Scholar 

  10. D.N. Gupta, N. Kant, D.E. Kim, H. Suk, Phys. Lett. A 368, 402 (2007)

    Article  ADS  Google Scholar 

  11. A.G. Khachatryan, F.A. van Goor, K.J. Boller, Phys. Rev. E 70, 067601 (2004)

    Article  ADS  Google Scholar 

  12. H. Liu, X.T. He, H. Hora, Appl. Phys. B 82, 93 (2006)

    Article  ADS  Google Scholar 

  13. K.P. Singh, H.K. Malik, Laser Part. Beams 26, 363 (2008)

    Google Scholar 

  14. F.V. Hartemann, E.C. Landahl, A.L. Troha Jr., J.R. Van Meter, H.A. Baldis, Phys. Plasmas 10, 6 (1999)

    Google Scholar 

  15. S. Afhami, E. Eslami, AIP Adv. 4, 087142 (2014)

    Article  ADS  Google Scholar 

  16. K.P. Singh, Appl. Phys. Lett. 87, 254102 (2005)

    Article  ADS  Google Scholar 

  17. F. Sohbatzadeh, S. Mirzanejhad, M. Ghasemi, Phys. Plasmas 13, 123108 (2006)

    Article  ADS  Google Scholar 

  18. N.M. Jisrawi, B.J. Galow, Y.I. Salamin, Laser Part. Beams 32, 671 (2014)

    Article  ADS  Google Scholar 

  19. Y.I. Salamin, N.M. Jisrawi, J. Phys. B: At. Mol. Opt. Phys. 47, 025601 (2014)

    Article  ADS  Google Scholar 

  20. B.J. Galow, J.-X. Li, Y.I. Salamin, Z. Harman, C.H. Keitel, Phys. Rev. ST Accel. Beams 16, 081302 (2013)

    Article  ADS  Google Scholar 

  21. http://www.plasma.ee.kansai-u.ac.jp/iec2010/pdf/pdf_slides_posters/Takakura_poster.pdf

  22. C.S. Liu, V.K. Tripathi, Phys. Plasmas 8, 285 (2001)

    Article  ADS  Google Scholar 

  23. I.V. Igumenshchev, A.B. Zylstra, C.K. Li, P.M. Nilson, V.N. Goncharov, R.D. Petrasso, Phys. Plasmas 21, 062707 (2014)

    Article  ADS  Google Scholar 

  24. http://www.lanl.gov/orgs/mpa/nhmfl/ and http://www.lanl.gov/orgs/mpa/nhmfl/60TLP.shtml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niti Kant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghotra, H.S., Kant, N. Electron acceleration to GeV energy by a chirped laser pulse in vacuum in the presence of azimuthal magnetic field. Appl. Phys. B 120, 141–147 (2015). https://doi.org/10.1007/s00340-015-6114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6114-0

Keywords

Navigation