Skip to main content
Log in

Information encryption and compression based on random polarization modulation in a joint transform correlator scheme under vector beam illumination

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate that a vectorial beam with a random polarization state can be used as the illumination source in a joint transform correlator configuration to encrypt and compress images. Illumination light featuring both space-variant phase and a space-variant polarization distribution can be generated using a common-path interferometric arrangement. A hybrid joint power spectrum is registered using an array of linear micro-polarizers that is closely attached to a charge-coupled device in the recording plane. Introduction of the vectorial beam into a security application enables simultaneous manipulation of multiple light wave parameters, which will significantly enlarge the key dimensions and key space of the cryptosystem. This vectorial optical cryptosystem may also provoke interest in probing optical vector encryption methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1–57 (2009)

    Article  Google Scholar 

  2. R. Dorn, S. Quabis, G. Leuchs, Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003)

    Article  ADS  Google Scholar 

  3. C. Varin, M. Piché, Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams. Appl. Phys. B. 74, S83 (2002)

    Article  ADS  Google Scholar 

  4. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713 (1997)

    Article  ADS  Google Scholar 

  5. Q. Zhan, Trapping metallic Rayleigh particles with radial polarization. Opt. Express 12, 3377 (2004)

    Article  ADS  Google Scholar 

  6. H. Chen, J. Hao, B. Zhang, J. Xu, J. Ding, H. Wang, Generation of vector beam with space-variant distribution of both polarization and phase. Opt. Lett. 36, 3179 (2011)

    Article  ADS  Google Scholar 

  7. Y. Pan, Y. Li, S. Li, Z. Ren, L. Kong, C. Tu, H. Wang, Elliptic-symmetry vector optical fields. Opt. Express 22, 19302 (2014)

    Article  Google Scholar 

  8. Y. Pan, Y. Li, S. Li, Z. Ren, Y. Si, C. Tu, H. Wang, Vector optical fields with bipolar symmetry of linear polarization. Opt. Lett. 38, 3700 (2013)

    Article  ADS  Google Scholar 

  9. X. Li, T.-H. Lan, C.-H. Tien, M. Gu, Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun. 3, 998 (2012)

    Article  ADS  Google Scholar 

  10. G. Biener, A. Niv, V. Kleiner, E. Hasman, Geometrical phase image encryption obtained with space-variant subwavelength gratings. Opt. Lett. 30, 1096 (2005)

    Article  ADS  Google Scholar 

  11. A. Alfalou, C. Brosseau, Dual encryption scheme of images using polarized light. Opt. Lett. 35, 2185 (2010)

    Article  ADS  Google Scholar 

  12. M. Dubreuil, A. Alfalou, C. Brosseau, Robustness against attacks of dual polarization encryption using the Stokes–Mueller formalism. J. Opt. 14, 094004 (2012)

    Article  ADS  Google Scholar 

  13. O. Matoba, B. Javidi, Secure holographic memory by double-random polarization encryption. Appl. Opt. 43, 2915 (2004)

    Article  ADS  Google Scholar 

  14. N. Zhu, Y. Wang, J. Liu, J. Xie, H. Zhang, Optical image encryption based on interference of polarized light. Opt. Express 17, 13418 (2009)

    Article  ADS  Google Scholar 

  15. P. Refregier, B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767 (1995)

    Article  ADS  Google Scholar 

  16. W. Chen, B. Javidi, X. Chen, Advances in optical security systems. Adv. Opt. Photonics 6, 120 (2014)

    Article  Google Scholar 

  17. T. Nomura, B. Javidi, Optical encryption using a joint transform correlator architecture. Opt. Eng. 39, 2031 (2000)

    Article  ADS  Google Scholar 

  18. E. Rueda, M. Tebaldi, R. Torroba, N. Bolognini, Three-dimensional key in a modified joint transform correlator encryption scheme. Opt. Commun. 284, 4321 (2011)

    Article  ADS  Google Scholar 

  19. I. Moreno, C. Iemmi, J. Campos, M.J. Yzuel, Jones matrix treatment for optical Fourier processors with structured polarization. Opt. Express 19, 4583 (2011)

    Article  ADS  Google Scholar 

  20. T. Kiire, S. Nakadate, M. Shibuya, T. Yatagai, Three-dimensional displacement measurement for diffuse object using phase-shifting digital holography with polarization imaging camera. Appl. Opt. 50, H189 (2011)

    Article  Google Scholar 

  21. A. Alfalou, M. Elbouz, M. Loussert, A new simultaneous compression & encryption method for images suitable to recognize form by optical correlation. Proc. SPIE. 7486, 74860J–74861J (2009)

    Google Scholar 

  22. A. Alfalou, M. Elbouz, A. Mansour, G. Keryer, New spectral image compression method based on an optimal phase coding and the RMS duration principle. J. Opt. 12, 115403 (2010)

    Article  ADS  Google Scholar 

  23. A. Alfalou, A. Mansour, Simultaneous multiplexing & encoding of multiple images based on a double random phase encryption system. Proc. SPIE. 7486, 74860L–74861L (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Shen, X. & Hu, W. Information encryption and compression based on random polarization modulation in a joint transform correlator scheme under vector beam illumination. Appl. Phys. B 120, 89–95 (2015). https://doi.org/10.1007/s00340-015-6104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6104-2

Keywords

Navigation