Applied Physics B

, Volume 119, Issue 1, pp 21–27 | Cite as

A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 μm

  • S. Viciani
  • M. Siciliani de Cumis
  • S. Borri
  • P. Patimisco
  • A. Sampaolo
  • G. Scamarcio
  • P. De Natale
  • F. D’Amato
  • V. Spagnolo
Article

Abstract

We report on the realization of a quartz-enhanced photoacoustic (QEPAS) sensor for measurement of H2S gas traces. A distributed feedback diode laser working at 2.64 µm wavelength has been coupled to an acoustic detection module composed of a quartz tuning fork and a micro-resonator system, and the QEPAS signal has been optimized in terms of gas sample pressure and laser frequency modulation depth. The sensor shows a very good linearity with respect to the H2S concentration. We performed an Allan–Werle variance analysis to investigate the sensor long-term stability, and we reached a detection limit of four parts per million for 1-s integration time and 500 parts per billion in 60-s integration time. The realized QEPAS sensor represents a good compromise between performance and handiness, in view of a fully portable device.

References

  1. 1.
    M. Lackner, Rev. Chem. Eng. 23, 65 (2007)CrossRefGoogle Scholar
  2. 2.
    P. Werle, F. D’Amato, S. Viciani, in Lasers in Chemistry: Probing and Influencing Matter, vol 1, chapter 9, (Wiley-VCH, Weinheim, 2008), p. 255. ISBN 978-3-527-31997-8Google Scholar
  3. 3.
    V. Spagnolo, R. Lewicki, L. Dong, F. K. Tittel, in Proceeding of the IEEE International Symposium on Medical Measurements and Applications MeMeA2011, p. 332 (2011). doi:10.1109/MeMeA.2011.5966773
  4. 4.
    F.K. Tittel, R. Lewicki, L. Dong, K. Liu, T.H. Risby, S. Solga, T. Schwartz, in Proc. SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing 2012, 82230E (23 February 2012). doi: 10.1117/12.912273
  5. 5.
    D. Smith, P. Španěl, Analyst 132, 390 (2007)CrossRefADSGoogle Scholar
  6. 6.
    I. Galli, S. Bartalini, P. Cancio, P. De Natale, D. Mazzotti, G. Giusfredi, M.E. Fedi, P.A. Mandò, Radiocarbon 55, 213 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Patimisco, G. Scamarcio, F.K. Tittel, V. Spagnolo, Sensors 14, 6165 (2014)CrossRefGoogle Scholar
  8. 8.
    V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B.E. Bernacki, J. Kriesel, Opt. Lett. 37, 4461 (2012)CrossRefADSGoogle Scholar
  9. 9.
    L.L. Barton, G.D. Fauque, Adv. Appl. Microbiol. 68, 4198 (2009)Google Scholar
  10. 10.
    L. Ciaffoni, R. Peverall, G.A.D. Ritchie, J. Breath Res. 5, 024002 (2011)CrossRefADSGoogle Scholar
  11. 11.
    U.S. Occupational Safe and Health Administration (OSHA). https://www.osha.gov/
  12. 12.
    J. Patterson, M.G. Mellon, Anal. Chem. 24, 1586 (1952)CrossRefGoogle Scholar
  13. 13.
    U. Willer, D. Scheel, I. Kostjucenko, C. Bohling, W. Schade, E. Faber, Spectrochim. Acta A 58, 2427 (2002)CrossRefADSGoogle Scholar
  14. 14.
    W. Chen, A.A. Kosterev, F.K. Tittel, X. Gao, W. Zhao, Appl. Phys. B 90, 311 (2008)CrossRefADSGoogle Scholar
  15. 15.
    A. Varga, Z. Bozóki, M. Szakáll, G. Szabó, Appl. Phys. B 85, 315 (2006)CrossRefADSGoogle Scholar
  16. 16.
    A.A. Kosterev, L. Dong, D. Thomazy, F.K. Tittel, S. Overby, Appl. Phys. B 101, 649 (2010)CrossRefADSGoogle Scholar
  17. 17.
    M. Siciliani de Cumis, S. Viciani, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, V. Spagnolo, Opt. Express 22, 28222 (2014)CrossRefADSGoogle Scholar
  18. 18.
    H. Wu, L. Dong, W. Ren, W. Yin, W. Ma, L. Zhang, S. Jia, F.K. Tittel, Sens. Actuators B 206, 364 (2015)CrossRefGoogle Scholar
  19. 19.
    V. Spagnolo, A.A. Kosterev, L. Dong, R. Lewicki, F.K. Tittel, Appl. Phys. B 100, 125 (2010)CrossRefADSGoogle Scholar
  20. 20.
    L. Dong, V. Spagnolo, R. Lewicki, F.K. Tittel, Opt. Express 19, 24037 (2011)CrossRefADSGoogle Scholar
  21. 21.
    A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005)CrossRefADSGoogle Scholar
  22. 22.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)CrossRefADSGoogle Scholar
  23. 23.
    Simulation from spectra.iao.ru Google Scholar
  24. 24.
    H.-J. Bauer, A.C.C. Paphitis, R. Schotter, Physica 47, 109 (1970)CrossRefADSGoogle Scholar
  25. 25.
    P. Patimisco, S. Borri, A. Sampaolo, H.E. Beere, D.A. Ritchie, M.S. Vitiello, G. Scamarcio, V. Spagnolo, Analyst 139, 2079 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. Viciani
    • 1
  • M. Siciliani de Cumis
    • 1
  • S. Borri
    • 1
  • P. Patimisco
    • 2
  • A. Sampaolo
    • 2
  • G. Scamarcio
    • 2
  • P. De Natale
    • 1
  • F. D’Amato
    • 1
  • V. Spagnolo
    • 2
  1. 1.CNR, Istituto Nazionale di Ottica (INO)European Laboratory for Nonlinear Spectroscopy (LENS)Sesto FiorentinoItaly
  2. 2.Dipartimento Interateneo di Fisica, CNR, Istituto di Fotonica e Nanotecnologie (IFN) UOS BariUniversità e Politecnico di BariBariItaly

Personalised recommendations