Temperature and water mole fraction measurements by time-domain-based supercontinuum absorption spectroscopy in a flame


In this manuscript, we present the first quantitative multi-scalar measurements by time-domain-based supercontinuum absorption spectroscopy in a flame. Temperature and \(\hbox {H}_{2}\hbox {O}\) mole fraction are determined simultaneously from broadband \(\hbox {H}_{2}\hbox {O}\) spectra ranging from 1,340 to 1,485 nm by a multi-peak least square fit between experiments and simulated spectra. To this end, a combination of the most comprehensive databases, namely the Barber–Tennyson database (BT2) and HITRAN2012, is used. Line strength values listed in BT2 are combined with averaged broadening coefficients and temperature exponents based on the upper rotational quantum number J from the latest HITRAN database to precisely model the line shape function for each transition. The height-dependent temperature and \(\hbox {H}_{2}\hbox {O}\) mole fraction profiles of a premixed one-dimensional flame of a McKenna type burner are reconstructed by direct comparison of experimental spectra with theory. For verification, the temperature data obtained are compared with a profile determined by coherent anti-Stokes Raman scattering.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    C.F. Kaminski, R.S. Watt, A.D. Elder, J.H. Frank, J. Hult, Appl. Phys. B 92, 367–378 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Opt. Express 16, 10178–10188 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    R.S. Watt, T. Laurila, C.F. Kaminski, J. Hult, Appl. Spectrosc. 63, 1389–1395 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161–173 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, Opt. Express 21, 19951–19965 (2013)

    Article  Google Scholar 

  6. 6.

    L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, H. Robert, J.G. Fujimoto, Y. Okura, Y. Urata, Opt. Express 15, 15115–15128 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    J. Hult, R.S. Watt, C.F. Kaminski, Opt. Express 15, 11385–11395 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    S.T. Sanders, Appl. Phys. B 75, 799–802 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    T. Werblinski, S.R. Engel, R. Engelbrecht, L. Zigan, S. Will, Opt. Express 21, 13656–13667 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    T. Werblinski, F. Mittmann, L. Zigan, S. Will, in 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2014)

  11. 11.

    R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, VlG Tyuterev, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    B.A. Voronin, N.N. Lavrentieva, T.P. Mishina, T.Y. Chesnokova, J. Quantum Spectrosc. Radiat. Transf. 111, 2308–2314 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, Appl. Opt. 36, 3253–3259 (1997)

    ADS  Article  Google Scholar 

  15. 15.

    J. Hult, R.S. Watt, C.F. Kaminski, J. Lightwave Technol. 25, 820–824 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    V. Mazet, C. Carteret, D. Brie, D. Idier, B. Humbert, Chemom. Intell. Lab. Syst. 76, 121–133 (2005)

    Article  Google Scholar 

  17. 17.

    L.A. Kranendonk, A.W. Caswell, S.T. Sanders, Appl. Opt. 46, 4117–4124 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    J.W. Walewski, S.T. Sanders, Appl. Phys. B 79, 415–418 (2004)

    Article  Google Scholar 

  19. 19.

    P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhlerl, A. Bodi, T. Gerber, T. Kasper, Rev. Sci. Instrum. 85, 025101 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    http://www.gaseq.co.uk/ (Version 0.79)

  21. 21.

    X. Liu, J.B. Jeffries, R.K. Hanson, AIAA J. 451, 411–419 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    S. Dupont, Z. Qu, S.-S. Kiwanuka, L.E. Hooper, J.C. Knight, S.R. Keiding, C.F. Kaminski, Laser Phys. Lett. 11, 1–7 (2014)

    Article  Google Scholar 

Download references


We gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German Excellence Initiative.

Author information



Corresponding author

Correspondence to Stefan Will.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werblinski, T., Mittmann, F., Altenhoff, M. et al. Temperature and water mole fraction measurements by time-domain-based supercontinuum absorption spectroscopy in a flame. Appl. Phys. B 118, 153–158 (2015). https://doi.org/10.1007/s00340-014-5964-1

Download citation


  • Negative Dispersion
  • Broadband Spectrum
  • Effective Path Length
  • Absorption Path Length
  • Temperature Exponent