Skip to main content
Log in

Single-longitudinal-mode multi-wavelength fiber laser with independent tuning of channel numbers and wavelength spacing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose and experimentally demonstrate a multi-wavelength fiber ring laser under single-longitudinal-mode (SLM) operation with independent tuning of channel numbers and wavelength spacing. Since a programmable filter in the cavity is used as the multi-wavelength selection component, the channel numbers and wavelength spacing can be independently varied by setting the response of programmable filter. Due to the nonlinear polarization rotation arising in the semiconductor optical amplifier, stable multi-wavelength emission can be obtained. For two wavelengths lasing under SLM operation, the wavelength spacing over the operation range of 1,530–1,565 nm can be tuned from 0.46 to 20.54 nm with a resolution of 8 pm. In particular, the power and wavelength fluctuation of individual channel is <0.1 dB and 0.02 nm after 2-h monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Talaverano, S. Abad, S. Jarabo, M. López-Amo, J. Lightwave Technol. 19, 4 (2001)

    Article  Google Scholar 

  2. S. Tanaka, K. Inamoto, H. Yokosuka, H. Somatomo, N. Takahashi, IEEE Sens. (2007), pp. 411–414

  3. S.H. Oh, J.-U. Shin, Y.-J. Park, S.-B. Kim, S. Park, H.-K. Sung, Y.-S. Baek, K.-R. Oh, IEEE Photonics Technol. Lett. 19, 20 (2007)

    Article  Google Scholar 

  4. Y.-G. Han, T.V.A. Tran, S.-H. Kim, S.B. Lee, Opt. Lett. 30, 11 (2005)

    Article  Google Scholar 

  5. X. Feng, C. Lu, H.Y. Tam, P.K.A. Wai, IEEE Photonics Technol. Lett. 19, 17 (2007)

    Google Scholar 

  6. X. Chen, Z. Deng, J. Yao, IEEE Trans. Microw. Theory Tech. 54, 2 (2006)

    Article  Google Scholar 

  7. W. Liu, M. Jiang, D. Chen, S. He, J. Lightwave Technol. 27, 20 (2009)

    Google Scholar 

  8. J. Yang, S.C. Tjin, N.Q. Ngo, IEEE Photonics Technol. Lett. 16, 4 (2004)

    Article  Google Scholar 

  9. A. Bellemare, M. Karásek, M. Rochette, S. LaRochelle, M. Têtu, J. Lightwave Technol. 18, 6 (2000)

    Article  Google Scholar 

  10. Y.-G. Han, G. Kim, J.H. Lee, S.H. Kim, S.B. Lee, IEEE Photonics Technol. Lett. 17, 5 (2005)

    Article  Google Scholar 

  11. Q. Mao, J.W.Y. Lit, IEEE Photonics Technol. Lett. 14, 5 (2002)

    Article  Google Scholar 

  12. Y.-G. Han, T. Van Anh Tran, S.B. Lee, Opt. Lett. 31, 6 (2006)

    Google Scholar 

  13. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, IEEE Photonics Technol. Lett. 8, 1 (1996)

    Article  Google Scholar 

  14. M.A. Ummy, N. Madamopoulos, A. Joyo, M. Kouar, R. Dorsinville, Opt. Express 19, 4 (2011)

    Article  Google Scholar 

  15. M.A. Ummy, N. Madamopoulos, P. Lama, R. Dorsinville, Opt. Express 17, 17 (2009)

    Article  Google Scholar 

  16. H. Chen, Opt. Lett. 30, 6 (2005)

    Google Scholar 

  17. H.L. Liu, H.Y. Tam, W.H. Chung P.K.A. Wai: OECC 2006 5C3-3-1

  18. Z. Zhang, J. Wu, K. Xu, X. Hong, J. Lin, Opt. Express 17, 19 (2009)

    Google Scholar 

  19. Y.-G. Han, C.-S. Kim, J.U. Kang, U.-C. Paek, Y. Chung, IEEE Photonics Technol. Lett. 15, 3 (2003)

    Article  Google Scholar 

  20. Y.-G. Han, S.B. Lee, D.S. Moon, Y. Chung, Opt. Lett. 30, 17 (2005)

    Article  Google Scholar 

  21. Z. Luo, Z. Cai, J. Huang, C. Ye, C. Huang, H. Xu, W.-D. Zhong, Opt. Lett. 33, 14 (2008)

    Google Scholar 

  22. D. Chen, S. Qin, L. Shen, H. Chi, S. He, Microw. Opt. Technol. Lett. 48, 12 (2006)

    Article  Google Scholar 

  23. X. Dong, P. Shum, C.C. Chan, N.Q. Ngo: Opt. Fiber Commun. Conf. OWI36 (2006)

  24. Y.-G. Han, J.H. Lee, S.B. Lee, L. Potì, A. Bogoni, J. Lightwave Technol. 25, 8 (2007)

    Article  Google Scholar 

  25. S. Roh, S. Chung, Y.W. Lee, I. Yoon, B. Lee, IEEE Photonics Technol. Lett. 18, 21 (2006)

    Article  Google Scholar 

  26. K. Zhang, J.U. Kang, C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser. Opt. Express 16, 18 (2008)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 863 High Technology Plan (2012AA011301), National Key Scientific Instrument and Equipment Development Project (No. 2013YQ16048702) and National Natural Science Foundation of China (61275069, 61331010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songnian Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Huang, T., Fu, S. et al. Single-longitudinal-mode multi-wavelength fiber laser with independent tuning of channel numbers and wavelength spacing. Appl. Phys. B 118, 23–28 (2015). https://doi.org/10.1007/s00340-014-5949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5949-0

Keywords

Navigation