Skip to main content
Log in

Design and experimental validation of novel enhanced-performance autofocusing microscope

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Autofocusing is a critical operation in automated microscopy applications in the automated vision inspection, measurement and manufacturing fields. The present group recently developed a novel optics-based autofocusing microscope incorporating two achromatic lenses, which provided a large linear autofocusing range, a rapid response, and a high focusing accuracy (Liu et al. in Appl Phys B 109:259–268, 2012). In the present study, the focusing accuracy of the microscope is further improved by replacing the two achromatic lenses with two cylindrical lens assemblies. The autofocusing performance of the modified microscope is characterized numerically by means of ZEMAX simulations and is then verified experimentally using a laboratory-built prototype. The experimental results confirm that compared with the original microscope with achromatic lenses, the modified microscope achieves a greater focusing accuracy (focusing accuracy of ≤1 μm, repeatability of ±1 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C.S. Liu, Y.C. Lin, P.H. Hu, Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations. Microsyst. Technol. 19, 1717–1724 (2013)

    Article  Google Scholar 

  2. J.H. Kang, C.B. Lee, J.Y. Joo, S.K. Lee, Phase-locked loop based on machine surface topography measurement using lensed fibers. Appl. Opt. 50, 460–467 (2011)

    Article  Google Scholar 

  3. P. Petruck, R. Riesenberg, R. Kowarschik, Optimized coherence parameters for high-resolution holographic microscopy. Appl. Phys. B 106, 339–348 (2012)

    Article  ADS  Google Scholar 

  4. Z. Zhang, Q. Feng, Z. Gao, C. Kuang, C. Fei, Z. Li, J. Ding, A new laser displacement sensor based on triangulation for gauge real-time measurement. Opt. Laser Technol. 40, 252–255 (2008)

    Article  ADS  Google Scholar 

  5. W.Y. Hsu, C.S. Lee, P.J. Chen, N.T. Chen, F.Z. Chen, Z.R. Yu, C.H. Kuo, C.H. Hwang, Development of the fast astigmatic auto-focus microscope system. Meas. Sci. Technol. 20, 045902-1–045902-9 (2009)

    Article  ADS  Google Scholar 

  6. M.T. Bin Najam, K.M. Arif, Y.G. Lee, Novel method for laser focal point positioning on the cover slip for TPP-based microfabrication and detection of the cured structure under optical microscope. Appl. Phys. B 111, 141–147 (2013)

    Article  ADS  Google Scholar 

  7. P.W. Wachulak, A. Bartnik, M. Skorupka, J. Kostecki, R. Jarocki, M. Szczurek, L. Wegrzynski, T. Fok, H. Fiedorowicz, Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Appl. Phys. B 111, 239–247 (2013)

    Article  ADS  Google Scholar 

  8. B.J. Jung, H.J. Kong, B.G. Jeon, D.Y. Yang, Y. Son, K.S. Lee, Autofocusing method using fluorescence detection for precise two-photon nanofabrication. Opt. Express 19, 22659–22668 (2011)

    Article  ADS  Google Scholar 

  9. P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 36, 2883–2885 (2011)

    Article  ADS  Google Scholar 

  10. S.H. Wang, C.J. Tay, C. Quan, H.M. Shang, Z.F. Zhou, Laser integrated measurement of surface roughness and micro-displacement. Meas. Sci. Technol. 11, 454–458 (2000)

    Article  ADS  Google Scholar 

  11. K.C. Fan, C.L. Chu, J.I. Mou, Development of a low-cost autofocusing probe for profile measurement. Meas. Sci. Technol. 12, 2137–2146 (2001)

    Article  ADS  Google Scholar 

  12. Y. Tanaka, T. Watanabe, K. Hamamoto, H. Kinoshita, Development of nanometer resolution focus detector in vacuum for extreme ultraviolet microscope. Jpn. J. Appl. Phys. 45, 7163–7166 (2006)

    Article  ADS  Google Scholar 

  13. Z. Li, K. Wu, Autofocus system for space cameras. Opt. Eng. 44, 053001-1–053001-5 (2005)

    ADS  Google Scholar 

  14. H.G. Rhee, D.I. Kim, Y.W. Lee, Realization and performance evaluation of high speed autofocusing for direct laser lithography. Rev. Sci. Instrum. 80, 073103-1–073103-5 (2009)

    Article  ADS  Google Scholar 

  15. M. He, W. Zhang, X. Zhang, A displacement sensor of dual-light based on FPGA. Optoelectron. Lett. 3, 294–298 (2007)

    Article  ADS  Google Scholar 

  16. K.H. Kim, S.Y. Lee, S. Kim, S.G. Jeong, DNA microarray scanner with a DVD pick-up head. Curr. Appl. Phys. 8, 687–691 (2008)

    Article  ADS  Google Scholar 

  17. C.S. Liu, S.H. Jiang, A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam. Meas. Sci. Technol. 24, 105101-1–105101-8 (2013)

    ADS  Google Scholar 

  18. T. Pengo, A. Munoz-Barrutia, C. Ortiz-De-Solorzano, Halton sampling for autofocus. J. Microsc. 235, 50–58 (2009)

    Article  MathSciNet  Google Scholar 

  19. S. Lee, J.Y. Lee, W. Yang, D.Y. Kim, Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy. Opt. Express 17, 6476–6486 (2009)

    Article  ADS  Google Scholar 

  20. H.C. Chang, T.M. Shih, N.Z. Chen, N.W. Pu, A microscope system based on bevel-axial method auto-focus. Opt. Lasers Eng. 47, 547–551 (2009)

    Article  Google Scholar 

  21. C.Y. Chen, R.C. Hwang, Y.J. Chen, A passive auto-focus camera control system. Appl. Soft Comput. 10, 296–303 (2010)

    Article  Google Scholar 

  22. M.A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, M.C. Chavez-Sanchez, Fast autofocus algorithm for automated microscopes. Opt. Eng. 44, 063601-1–063601-8 (2005)

    ADS  Google Scholar 

  23. V.V. Bezzubik, S.N. Ustinov, N.R. Belashenkov, Optimization of algorithms for autofocusing a digital microscope. J. Opt. Technol. 76(10), 603–608 (2009)

    Article  Google Scholar 

  24. J.H. Lee, Y.S. Kim, S.R. Kim, I.H. Lee, H.J. Pahk, Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm. Opt. Lasers Eng. 46, 558–569 (2008)

    Article  Google Scholar 

  25. S.L. Brazdilova, M. Kozubek, Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions. J. Microsc. 236, 194–202 (2009)

    Article  MathSciNet  Google Scholar 

  26. S. Yazdanfar, K.B. Kenny, K. Tasimi, A.D. Corwin, E.L. Dixon, R.J. Filkins, Simple and robust image-based autofocusing for digital microscopy. Opt. Express 16, 8670–8677 (2008)

    Article  ADS  Google Scholar 

  27. E.F. Wright, D.M. Wells, A.P. French, C. Howells, N.M. Everitt, A low-cost automated focusing system for time-lapse microscopy. Meas. Sci. Technol. 20, 027003-1–027003-4 (2009)

    Article  ADS  Google Scholar 

  28. T. Kim, T.C. Poon, Autofocusing in optical scanning holography. Appl. Opt. 48, H153–H159 (2009)

    Article  Google Scholar 

  29. M. Moscaritolo, H. Jampel, F. Knezevich, R. Zeimer, An image based auto-focusing algorithm for digital fundus photography. IEEE Trans. Med. Imaging 28, 1703–1707 (2009)

    Article  Google Scholar 

  30. Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, High-speed spectrally resolved multifocal multiphoton microscopy. Appl. Phys. B 99, 633–637 (2010)

    Article  ADS  Google Scholar 

  31. S.J. Abdullah, M.M. Ratnam, Z. Samad, Error-based autofocus system using image feedback in a liquid-filled diaphragm lens. Opt. Eng. 48, 123602-1–123602-9 (2009)

    ADS  Google Scholar 

  32. C.S. Liu, P.H. Hu, Y.C. Lin, Design and experimental validation of novel optics-based autofocusing microscope. Appl. Phys. B 109, 259–268 (2012)

    Article  ADS  Google Scholar 

  33. A. Weiss, A. Obotnine, A. Lasinski, Method and Apparatus for the Auto-focussing Infinity Corrected Microscopes. U.S. Patent 7700903, 2010

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant No. NSC 102-2221-E-194-023 and the Ministry of Science and Technology of Taiwan under Grant No. MOST 103-2221-E-194-006-MY3. The authors would also like to express their appreciation to Mr. Pin Hao Hu of the Additive Manufacturing and Laser Application Center, Industrial Technology Research Institute, Taiwan, for the technological assistance provided throughout the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CS., Jiang, SH. Design and experimental validation of novel enhanced-performance autofocusing microscope. Appl. Phys. B 117, 1161–1171 (2014). https://doi.org/10.1007/s00340-014-5940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5940-9

Keywords

Navigation