Skip to main content
Log in

Signal enhancement of magneto-optical Kerr effect measurements by weak value amplification

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Magneto-optic effects are widely applied in the analysis of magnetic thin films. Specifically, due to its local probing characteristic, sensitivity, and experimental simplicity, the surface magneto-optic Kerr effect has been shown to be very useful in the investigation of the magnetization structure of materials. In this work, we propose a weak measurement-based protocol to enhance the pointer deflection, namely the polarization rotation of an incident light beam upon reflection from a magnetic surface, in some orders of magnitude, without loss in precision. It could provide a new insight into magnetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Z.Q. Qiu, S.D. Bader, Rev. Sci. Instrum. 71, 1243 (2000)

    Article  ADS  Google Scholar 

  2. J.M.D. Coey, Magnetism and Magnetic Materials, 1st edn. (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  3. T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, N. Koshizuka, Phys. Rev. Lett. 60, 1426 (1988)

    Article  ADS  Google Scholar 

  4. Y. Suzuki, T. Katayama, S. Yoshida, K. Tanaka, K. Sato, Phys. Rev. Lett. 68, 3355 (1992)

    Article  ADS  Google Scholar 

  5. Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  6. B.L. Bernardo, S. Azevedo, A. Rosas, Phys. Lett. A 378, 2029 (2014)

    Article  ADS  Google Scholar 

  7. R.M. Camacho, P.B. Dixon, R.T. Glasser, A.N. Jordan, J.C. Howell, Phys. Rev. Lett. 102, 013902 (2009)

    Article  ADS  Google Scholar 

  8. J. von Neuman, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1955)

    Google Scholar 

  9. A.G. Kofman, S. Ashhab, F. Nori, Phys. Rept. 520, 43 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. D.R. Solli, C.F. McCormick, R.Y. Chiao, S. Popescu, J.M. Hickmann, Phys. Rev. Lett. 92, 043601 (2004)

    Article  ADS  Google Scholar 

  11. P.B. Dixon, D.J. Starling, A.N. Jordan, J.C. Howell, Phys. Rev. Lett. 102, 173601 (2009)

    Article  ADS  Google Scholar 

  12. O. Hosten, P. Kwiat, Science 319, 787 (2008)

    Article  ADS  Google Scholar 

  13. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Redwood City, 1985)

    Google Scholar 

  14. Y. Kedem, L. Vaidman, Phys. Rev. Lett. 105, 230401 (2010)

    Article  ADS  Google Scholar 

  15. S.M. Barnett, D.T. Pegg, Phys. Rev. A 41, 3427 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1969)

    MATH  Google Scholar 

  17. I.M. Duck, P.M. Stevenson, E.C.G. Sudarshan, Phys. Rev. D 40, 2112 (1989)

    Article  ADS  Google Scholar 

  18. S. Pang, J. Dressel, T.A. Brun, Phys. Rev. Lett. 113, 030401 (2014)

    Article  ADS  Google Scholar 

  19. X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, G.-C. Guo, Phys. Rev. Lett. 111, 033604 (2013)

    Article  ADS  Google Scholar 

  20. I. Shomroni, O. Bechler, S. Rosenblum, B. Dayan, Phys. Rev. Lett. 111, 023604 (2013)

    Article  ADS  Google Scholar 

  21. P. Ginzburg, M. Shalyt, A. Hayat, M. Orenstein, J. Phys. B 43, 105502 (2010)

    Article  ADS  Google Scholar 

  22. G. Vrijsen, D. Gaultney, K.M. Hudek, L. Isabella, and J. Kim, Measuring the photonic frequency qubit generated by an 171Yb+ Ion in a surface trap. In: CLEO Conference Paper (2014)

  23. E. Mount, S. Baek, M. Blain, D. Stick, D. Gaultney, S. Crain, R. Noek, T. Kim, P. Maunz, J. Kim, New J. Phys. 15, 093018 (2013)

    Article  ADS  Google Scholar 

  24. E. Hecht, Optics, 2nd edn. (Addison-Wesley, Reading, MA, 1987)

    Google Scholar 

  25. D.J. Starling, P.B. Dixon, A.N. Jordan, J.C. Howell, Phys. Rev. A 80, 041803(R) (2009)

    Article  ADS  Google Scholar 

  26. Y. Kedem, Phys. Rev. A 85, 060102(R) (2012)

    Article  ADS  Google Scholar 

  27. P. Egan, J.A. Stone, Opt. Lett. 37, 4991 (2012)

    Article  ADS  Google Scholar 

  28. A.N. Jordan, J. Martinez-Rincon, J.C. Howell, Phys. Rev. X 4, 011031 (2014)

    Google Scholar 

  29. J. Dressel, M. Malik, F.M. Miatto, A.N. Jordan, R.W. Boyd, Rev. Mod. Phys. 86, 307 (2014)

    Article  ADS  Google Scholar 

  30. D.J. Starling, P.B. Dixon, N.S. Williams, A.N. Jordan, J.C. Howell, Phys. Rev. A 82, 011802(R) (2010)

    Article  ADS  Google Scholar 

  31. S. Blundell, Magnetism in Condensed Matter, 1st edn. (Oxford University Press, Oxford, 2001)

    Google Scholar 

  32. N.J. Cerf, C. Adami, P.G. Kwiat, Phys. Rev. A 57, 1477(R) (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertúlio de Lima Bernardo.

Appendix: Post-selecting a frequency qubit

Appendix: Post-selecting a frequency qubit

Our protocol is based on the post-selection of an arbitrary frequency qubit (filtering process). In doing so, after the weak interaction between the frequency and polarization degrees of freedom, if a prism is used to spatially separate the photons in the states \(\left| {\omega _{1}} \right\rangle\) and \(\left| {\omega _{2}} \right\rangle\), and a phase shift \(\varphi\) is applied in the path \(\left| {2} \right\rangle\), we obtain the entangled state

$$\begin{aligned} \left| {\varPhi } \right\rangle = \frac{1}{\sqrt{2}}(\left| {\omega _{1}} \right\rangle \left| {1} \right\rangle + e^{i\varphi }\left| {\omega _{2}} \right\rangle \left| {2} \right\rangle ). \end{aligned}$$
(21)

Now, if these two paths are recombined in a symmetric beam splitter (See Fig. 2), the transformations \(\left| {1} \right\rangle \rightarrow \frac{1}{\sqrt{2}} \left( \left| {1^{'}} \right\rangle + i\left| {2^{'}} \right\rangle \right)\) and \(\left| {2} \right\rangle \rightarrow \frac{1}{\sqrt{2}} (i\left| {1^{'}} \right\rangle + \left| {2^{'}} \right\rangle )\) take place, where \(\left| {1^{'}} \right\rangle\) and \(\left| {2^{'}} \right\rangle\) represent the two output modes of the beam splitter [32]. After this stage, we obtain the state

$$\begin{aligned} \left| {\varPhi ^{'}} \right\rangle&= \frac{1}{2} \left( \left| {\omega _{1}} \right\rangle + e^{i(\varphi +\pi /2)}\left| {\omega _{2}} \right\rangle \right) \left| {1^{'}} \right\rangle \\&\quad + \frac{i}{2} \left( \left| {\omega _{1}} \right\rangle - e^{i(\varphi +\pi /2)}\left| {\omega _{2}} \right\rangle \right) \left| {2^{'}} \right\rangle . \end{aligned}$$
(22)

Then, if, after the weak interaction, we apply a phase shift in the path \(\left| {2} \right\rangle\) given by

$$\begin{aligned} \varphi = \hbox {arccos} \left[ \frac{\sin \alpha - \cos \alpha }{ \sin \alpha + \cos \alpha } \right] - \frac{\pi }{2}, \end{aligned}$$
(23)

and select only the photons emerging from the output mode \(\left| {1^{'}} \right\rangle\) of the beam splitter, the post-selected state, \(\left| {\psi _{f}} \right\rangle = (1/\sqrt{2}) [(\cos \alpha + \sin \alpha )\left| {\omega _{1}} \right\rangle - (\cos \alpha - \sin \alpha )\left| {\omega _{2}} \right\rangle ]\), necessary for obtaining the amplification factor of Eq. (18), is accomplished.

Fig. 2
figure 2

A symmetric beam splitter, with input modes \(\left| {1} \right\rangle\) and \(\left| {2} \right\rangle\) and output modes \(| {1^{'}} \rangle\) and \(| {2^{'}} \rangle\), operates according to the relation \(\hat{B} = | {1^{'}} \rangle \left\langle {1} \right| + | {2^{'}} \rangle \left\langle {2} \right| + i(| {1^{'}} \rangle \left\langle {2} \right| + | {2^{'}} \rangle \left\langle {1} \right| )\). This device acts as a fundamental ingredient in the post-selection (filtering) process of a frequency qubit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima Bernardo, B. Signal enhancement of magneto-optical Kerr effect measurements by weak value amplification. Appl. Phys. B 117, 1099–1105 (2014). https://doi.org/10.1007/s00340-014-5931-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5931-x

Keywords

Navigation