Skip to main content
Log in

Investigation of the threshold intensity versus gas pressure in the breakdown of helium by 248 nm laser radiation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An investigation of the unexpectedly strong dependence of the threshold intensity on the gas pressure in the experimental study on the breakdown of He by short laser wavelength (Turcu et al., in Opt Commun, 134:66–68, 1997) is presented. A modified electron cascade model is applied (Evans and Gamal, in J Phys D Appl Phys, 13:1447–1458, 1980). Computations revealed reasonable agreement between the calculated thresholds and the measured ones. Moreover, the calculated electron energy distribution function and its parameters proved that multiphoton ionization of ground and excited atoms is the main source for the seed electrons, which contributes to the breakdown of helium. The effect of diffusion losses over pressures <1,000 Torr elucidated the origin of the strong dependence of the threshold intensity on the gas pressure. Collisional ionization dominates only at high pressures. No evidence for recombination losses is observed for pressures up to 3,000 Torr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.C.E. Turcu, M.C. Gower, P.H. Huntington, Measurement of KrF laser breakdown threshold in gases. Opt. Commun. 134, 66–68 (1997)

    Article  ADS  Google Scholar 

  2. C. Evans, Y.E.E.-D. Gamal, Laser induced breakdown of helium. J. Phys. D Appl. Phys. 13, 1447–1458 (1980)

    Article  ADS  Google Scholar 

  3. H.T. Buscher, R.G. Tomlinson, E.K. Damon, Frequency dependence of optically induced gas breakdown. Phys. Rev. Lett. 15, 847–849 (1965)

    Article  ADS  Google Scholar 

  4. N. Kroll, K.M. Watson, Theoretical study of ionization of air by intense laser pulses. Phys. Rev. A 5(4), 1883–1905 (1972)

    Article  ADS  Google Scholar 

  5. C.H. Chan, C.D. Moody, Solution of the classical Boltzmann equation for He and Ne gas breakdown. J. Appl. Phys. 45(3), 1105–1111 (1974)

    Article  ADS  Google Scholar 

  6. L. Friedland, Quantum aspects of laser-induced breakdown in argon. Phys. Rev. A12, 2024 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  7. Y.E.E.-D. Gamal, I.M. Azzouz, Influence of the collision frequency on the electron distribution function in laser-induced discharges in argon. J. Phys. D Appl. Phys. 20, 187–192 (1987)

    Article  ADS  Google Scholar 

  8. I.G. Weyl, D.I. Rosen, Laser-induced breakdown in argon at 0.35 μm: theory and experiments. Phys. Rev. A 31, 2300–2313 (1985)

    Article  ADS  Google Scholar 

  9. D.I. Rosen, I.G. Weyl, Laser-induced breakdown in nitrogen and the rare gases at 0.53 and 0.35 μm. J. Phys. D Appl. Phys. 20, 1264–1276 (1987)

    Article  ADS  Google Scholar 

  10. Y.E.E.-D. Gamal, M.S. Shafik, M.M. Khalil, An investigation of the wavelength-dependence of the threshold intensity of laser induced breakdown of molecular hydrogen. J. Phys. D Appl. Phys. 26, 1933–1940 (1993)

    Article  ADS  Google Scholar 

  11. Y.E.E.-D. Gamal, M.M. Omara, Study of the electron kinetic processes in laser-induced breakdown of electronegative gases over an extended wavelength range. Radiat. Phys. Chem. 62(5–6), 361–370 (2001)

    Article  ADS  Google Scholar 

  12. C.H. Chan, C.D. Moody, W.B. Mcknight, Significant loss mechanisms in gas breakdown at 10.6 um. J. Appl. Phys. 44(3), 1179–1189 (1973)

    Article  ADS  Google Scholar 

  13. P.J. Davis, L.A. Smith, C. Giranda, M. Squicciarini, Laser induced plasma formation in Xe, Ar, N2, and O2 at the first four Nd- YAG harmonics. Appl. Opt. 30(30), 4358–4364 (1991)

    Article  ADS  Google Scholar 

  14. A. Sircar, R.K. Dwivedi, R.K. Thareja, Laser induced breakdown of Ar, N2 and O2 gases using 1.064, 0.532, 0.355 and 0.266 mm radiation. Appl. Phys. B 63, 623–627 (1996)

    ADS  Google Scholar 

  15. Y.B. Zel’dovich, Y.P. Raizer, Cascade ionization of a gas by light pulse. Sov Phys JETP 20, 772–780 (1965)

    Google Scholar 

  16. A.J. Alcock, K. Kato, M.C. Richardson, New features of laser-induced gas breakdown in the ultraviolet. Opt. Commun. 6(4), 342–344 (1972)

    Article  ADS  Google Scholar 

  17. G.J. Pert, Inverse bremsstrahlung absorption in large radiation fields during binary collisions-classical theory. J. Phys. A: Gen. Phys. 5, 506 (1972)

    Article  ADS  Google Scholar 

  18. M. Hayashi, Recommended values of transport cross sections for elastic collision and total collision cross section for electrons in atomic and molecular gases, Report of At. Data, IPP/Univ. of Nogoya, 1981

  19. C. Grey Morgan, Some aspects of laser-produced plasmas. Plasma Phys. Controll. Fusion 26(128), 1367–1382 (1984)

    Article  ADS  Google Scholar 

  20. C. Grey, Morgan. Laser-induced breakdown of gases, reports on progress in physics 38, 621–665 (1975)

    Google Scholar 

  21. E.E. Ferguson, F.C. Feshenfeld, A.L. Schmeltekopf, Dissociative recombination in helium after glows. Phys. Rev. 138, A381–A385 (1965)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galila Abdellatif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamal, Y.E.ED., Abdellatif, G. Investigation of the threshold intensity versus gas pressure in the breakdown of helium by 248 nm laser radiation. Appl. Phys. B 117, 103–111 (2014). https://doi.org/10.1007/s00340-014-5807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5807-0

Keywords

Navigation