Skip to main content
Log in

Cylinder head temperature determination using high-speed phosphor thermometry in a fired internal combustion engine

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper documents the application of high-speed phosphor thermometry to measure cylinder head temperatures under fired engine conditions. The thermographic phosphor Gd3Ga5O12:Cr,Ce was synthesized with a special composition to meet the requirements of the measurement technique and the device under test. Calibration measurements are given in the first section, providing the temperature lifetime characteristic and temporal standard deviations in order to quantify single-shot precision. Accuracy was investigated for laser-induced heating. Measurements inside an optically accessible combustion engine are presented in the second section. Measurement locations at the cylinder head were determined, as well as temperature evolutions for variations in spark timing and air–fuel ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. Rakopoulos, G. Kosmadakis, E. Pariotis, Critical evaluation of current heat transfer models used in cfd in-cylinder engine simulations and establishment of a comprehensive wall-function formulation. Appl. Energy 87(5), 1612–1630 (2010). doi:10.1016/j.apenergy.2009.09.029

    Article  Google Scholar 

  2. G. Borman, K. Nishiwaki, Internal-combustion engine heat transfer. Prog. Energy Combust. Sci. 13(1), 1–46 (1987). doi:10.1016/0360-1285(87)90005-0

    Article  Google Scholar 

  3. J.A. Gatowski, M.K. Smith, A.C. Alkidas, An experimental investigation of surface thermometry and heat flux. Exp. Thermal Fluid Sci. 2(3), 280–292 (1989). doi:10.1016/0894-1777(89)90017-4

    Article  Google Scholar 

  4. M.A. Marr, J.S. Wallace, S. Chandra, L. Pershin, J. Mostaghimi, A fast response thermocouple for internal combustion engine surface temperature measurements. Exp. Thermal Fluid Sci. 34(2), 183–189 (2010). doi:10.1016/j.expthermflusci.2009.10.008

    Article  Google Scholar 

  5. S.W. Allison, G.T. Gillies, Remote thermometry with thermographic phosphors: Instrumentation and applications. Rev. Sci. Instrum. 68(7), 2615 (1997). doi:10.1063/1.1148174

    Article  ADS  Google Scholar 

  6. M. Aldén, A. Omrane, M. Richter, G. Särner, Thermographic phosphors for thermometry: A survey of combustion applications. Prog. Energy Combust. Sci. 37(4), 422–461 (2011). doi:10.1016/j.pecs.2010.07.001

    Article  Google Scholar 

  7. J. Brübach, C. Pflitsch, A. Dreizler, B. Atakan, On surface temperature measurements with thermographic phosphors: A review. Prog. Energy Combust. Sci. 39(1), 37–60 (2013). doi:10.1016/j.pecs.2012.06.001

    Article  Google Scholar 

  8. H. Aizawa, M. Sekiguchi, T. Katsumata, S. Komuro, T. Morikawa, Fabrication of ruby phosphor sheet for the fluorescence thermometer application. Rev. Sci. Instrum. 77(4), 044902 (2006). doi:10.1063/1.2190069

    Article  ADS  Google Scholar 

  9. A.L. Heyes, S. Seefeldt, J. P. Feist, Two-colour phosphor thermometry for surface temperature measurement. Opt. Laser Technol. 38(4-6), 257–265 (2006)

    Article  ADS  Google Scholar 

  10. J. Brübach, A. Patt, A. Dreizler, Spray thermometry using thermographic phosphors, Applied Physics B 83(4), 499–502 (2006). doi:10.1007/s00340-006-2244-8

    Article  ADS  Google Scholar 

  11. D. A. Rothamer, J. Jordan, Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors, Appl. Phys. B 106(2), 435–444 (2012). doi:10.1007/s00340-011-4707-9

    Article  ADS  Google Scholar 

  12. B. Noel, Borella H. M., L. Franks, B. Marshall, S. W. Allison, M. R. Cates, Proposed method for remote thermometry in turbine engines, in: AIAA Paper, Los Alamos Natl Lab and Los Alamos and NM and USA and Los Alamos Natl Lab and Los Alamos and NM and USA, 1985

  13. T. Kissel, E. Baum, A. Dreizler, J. Brübach, Two-dimensional thermographic phosphor thermometry using a CMOS high speed camera system, Appl. Phys. B 96(4):731–734 (2009). doi:10.1007/s00340-009-3626-5

    Article  ADS  Google Scholar 

  14. B. Atakan, C. Eckert, C. Pflitsch, Light emitting diode excitation of Cr3 + :Al2O3 as thermographic phosphor: experiments and measurement strategy, Meas. Sci. Technol. 20(7), 075304 (2009). doi:10.1088/0957-0233/20/7/075304

    Article  ADS  Google Scholar 

  15. S. W. Allison, J. R. Buczyna, R. A. Hansel, Walker D. G., G. T. Gillies, Temperature-dependent fluorescence decay lifetimes of the phosphor y_3(al_0.5ga_0.5)_5o_12:ce 1%. J. Appl. Phys. 105(3), 036105–+ (2009). doi:10.1063/1.3077262

    Google Scholar 

  16. N. Fuhrmann, J. Brübach, A. Dreizler, Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach. Proc. Combust. Inst. 34(2), 3611–3618 (2013). doi:10.1016/j.proci.2012.06.084

    Article  Google Scholar 

  17. J.S. Armfield, R.L. Graves, D.L. Beshears, M.R. Cates, T.V. Smith, S.W. Allison, Phosphor thermometry for internal combustion engines. SAE Technical Paper Series (971642)

  18. A. Omrane, F. Ossler, M. Aldén, J. Svenson, J. Pettersson, Surface temperature of decomposing construction materials studied by laser-induced phosphorescence. Fire Mater. 29(1), 39–51 (2005)

    Article  Google Scholar 

  19. T. Husberg, S. Girja, I. Denbratt, A. Omrane, M. Aldén, J. Engström, Piston temperature measurements by use of thermographic phosphors and thermocouples in a heavy-duty diesel engine run under partly premixed conditions. SAE International 2005-01-1646

  20. C. Knappe, P. Andersson, M. Algotsson, M. Richter, J. Lindén, M. Aldén, M. Tuner, B. Johansson, Laser-induced phosphorescence and the impact of phosphor coating thickness on crank-angle resolved cylinder wall temperatures. SAE Technical Paper 2011-01-1292. doi:10.4271/2011-01-1292

  21. S. Someya, M. Uchida, K. Tominaga, H. Terunuma, Y. Li, K. Okamoto, Lifetime-based phosphor thermometry of an optical engine using a high-speed cmos camera. Int. J. Heat Mass Transf. 54(17-18), 3927–3932 (2011). doi:10.1016/j.ijheatmasstransfer.2011.04.032

    Article  Google Scholar 

  22. N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brübach, A. Dreizler, Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors, Appl. Phys. B 106(4), 945–951 (2012). doi:10.1007/s00340-011-4819-2

    Article  ADS  Google Scholar 

  23. N. Fuhrmann, E. Baum, J. Brübach, A. Dreizler, High-speed phosphor thermometry, Rev. Sci. Instrum.82(10), (2011) 104903. doi:10.1063/1.3653392

    Article  ADS  Google Scholar 

  24. J. Brübach, T. Kissel, M. Frotscher, M. Euler, B. Albert, A. Dreizler, A survey of phosphors novel for thermography, J. Lumin. 131(4), 559–564 (2011). doi:10.1016/j.jlumin.2010.10.017

    Article  Google Scholar 

  25. T. Kissel, J. Brübach, F.M., C. Litterscheid, A. Albert, A. Dreizler, Phosphor thermometry: On the synthesis and characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (YAP:Eu), Materials Chemistry and Physics, accepted

  26. E.L. Dukhovskaya, Y.G. Saksonov, A.G. Titova, Oxygen parameters of certain compounds with the garnet structure. Neorg. Mater. 9, 809 (1973)

    Google Scholar 

  27. A.X.S. Bruker, TOPAS V2.1: General profile and structure analysis software for powder diffraction data (2003)

  28. B. Atakan, D. Roskosch, B. Atakan, D. Roskosch, Thermographic phosphor thermometry in transient combustion: A theoretical study of heat transfer and accuracy. Proc. Combust. Inst. 34(2), 3603–3610 (2013). doi:10.1016/j.proci.2012.05.022

    Article  Google Scholar 

  29. M.A. Everest, D.B. Atkinson, Discrete sums for the rapid determination of exponential decay constants. Rev. Sci. Instrum. 79(2), 023108 (2008). doi:10.1063/1.2839918

    Article  ADS  Google Scholar 

  30. N. Fuhrmann, J. Brübach, A. Dreizler, On the mono-exponential fitting of decay curves., Applied Physics B: Lasers and Optics, submitted

  31. J. Brübach, J. Janicka, A. Dreizler, An algorithm for the characterisation of multi-exponential decay curves, Opt. Lasers Eng. 47(1), 75–79 (2009). doi:10.1016/j.optlaseng.2008.07.015

    Article  Google Scholar 

  32. N. Fuhrmann, T. Kissel, A. Dreizler, J. Brübach, Gd3Ga5O12:Cr-a phosphor for two-dimensional thermometry in internal combustion engines, Meas. Sci. Technol. 22(4), 045301 (2011). doi:10.1088/0957-0233/22/4/045301

    Article  ADS  Google Scholar 

  33. G. Blasse, B.C. Grabmaier, M. Ostertag, The afterglow mechanism of chromium-doped gadolinium gallium garnet, J. Alloys Compd. 200(1-2), 17–18 (1993). doi:10.1016/0925-8388(93)90464-X

    Article  Google Scholar 

  34. H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2(2), 65–71 (1969). doi:10.1107/S0021889869006558

    Article  Google Scholar 

  35. C. Greskovich, S. Duclos, Ceramic scintillators. Annu. Rev. Mater. Sci. 27(1), 69–88 (1997). doi:10.1146/annurev.matsci.27.1.69

    Article  ADS  Google Scholar 

  36. A. Khalid, K. Kontis, Thermographic phosphors for high temperature measurements: Principles, current state of the art and recent applications. Sensors 8(9), 5673–5744 (2008)

    Article  Google Scholar 

  37. J. Brübach, J.P. Feist, A. Dreizler, Characterization of manganese-activated magnesium fluorogermanate with regards to thermographic phosphor thermometry, Measurement Science and Technology 19(2), 025602 (2008). doi:10.1088/0957-0233/19/2/025602

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of the DFG (Deutsche Forschungsgemeinschaft), projects EXC 259, DR 374/9-1 and AL 536/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Fuhrmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (35 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrmann, N., Litterscheid, C., Ding, CP. et al. Cylinder head temperature determination using high-speed phosphor thermometry in a fired internal combustion engine. Appl. Phys. B 116, 293–303 (2014). https://doi.org/10.1007/s00340-013-5690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5690-0

Keywords

Navigation