Skip to main content
Log in

Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose an optodynamical model of interaction of pulsed laser radiation with aggregates of spherical metallic nanoparticles embedded into host media. The model takes into account polydispersity of particles, pair interactions between the particles, dissipation of absorbed energy, heating and melting of the metallic core of particles and of their polymer adsorption layers, and heat exchange between electron and ion components of the particle material as well as heat exchange with the interparticle medium. Temperature dependence of the electron relaxation constant of the particle material and the effect of this dependence on interaction of nanoparticles with laser radiation are first taken into consideration. We study in detail light-induced processes in the simplest resonant domains of multiparticle aggregates consisting of two particles of an arbitrary size in aqueous medium. Optical interparticle forces are realized due to the light-induced dipole interaction. The dipole moment of each particle is calculated by the coupled dipole method (with correction for the effect of higher multipoles). We determined the role of various interrelated factors leading to photomodification of resonant domains and found an essential difference in the photomodification mechanisms between polydisperse and monodisperse nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  2. V.M. Shalaev, Phys. Rep. 272, 61 (1996)

    Article  ADS  Google Scholar 

  3. V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Berlin, 2000)

    Google Scholar 

  4. S.V. Karpov, V.V. Slabko, Optical and Photophysical Properties of Fractal-Structured Metal Sols (Russian Academy of Sciences, Siberian Branch, Novosibirsk, 2003)

    Google Scholar 

  5. M.I. Stockman, L.N. Pandey, T.F. George, Enhanced Nonlinear-Optical Responses of Disordered Clusters and Composites in Nonlinear Optical Materials (Springer, New York, 1998)

    Google Scholar 

  6. A.P. Gavrilyuk, S.V. Karpov, Appl. Phys. B 97, 163 (2009)

    Article  ADS  Google Scholar 

  7. S.V. Karpov, A.K. Popov, S.G. Rautian, V.P. Safonov, V.V. Slabko, V.M. Shalaev, M.I. Shtokman, JETP Lett. 48, 571 (1988)

    ADS  Google Scholar 

  8. E.Y. Danilova, S.G. Rautian, V.P. Drachev, S.V. Perminov, Bull. Russ. Acad. Sci. (Phys.) 60, 18 (1996)

    Google Scholar 

  9. E.Y. Danilova, S.G. Rautian, V.P. Safonov, Bull. Russ. Acad. Sci. (Phys.) 60, 56 (1996)

    Google Scholar 

  10. V.P. Safonov, V.M. Shalaev, V.M. Markel, Y.E. Danilova, N.N. Lepeskin, W. Kim, S.G. Rautian, R.L. Armstrong, Phys. Rev. Lett. 80, 1102 (1998)

    Article  ADS  Google Scholar 

  11. S.V. Karpov, V.V. Slabko, A.K. Popov, Tech. Phys. 48, 749 (2003)

    Article  Google Scholar 

  12. S.V. Karpov, M.K. Kodirov, A.I. Ryasnyanski, V.V. Slabko, Quantum Electron. 31, 904 (2001)

    Article  ADS  Google Scholar 

  13. S.V. Karpov, V.S. Gerasimov, I.L. Isaev, V.A. Markel, Phys. Rev. B 72, 205425 (2005)

    Article  ADS  Google Scholar 

  14. S.V. Karpov, V.S. Gerasimov, I.L. Isaev, O.P. Podavalova, V.V. Slabko, Colloid J. 69, 178 (2007)

    Google Scholar 

  15. A.P. Gavrilyuk, S.V. Karpov, Appl. Phys. B 102, 65 (2011)

    Article  ADS  Google Scholar 

  16. V.P. Drachev, S.V. Perminov, S.G. Rautian, V.P. Safonov, J. Exp. Theor. Phys. 94, 901 (2002)

    Article  ADS  Google Scholar 

  17. S.V. Perminov, V.P. Drachev, S.G. Rautian, Opt. Express 15, 8639 (2007)

    Article  ADS  Google Scholar 

  18. S.V. Perminov, V.P. Drachev, S.G. Rautian, Opt. Lett. 33, 2998 (2008)

    Article  ADS  Google Scholar 

  19. S.V. Perminov, V.P. Drachev, Opt. Spectrosc. 107, 987 (2009)

    Article  ADS  Google Scholar 

  20. S.V. Karpov, V.V. Slabko, G.A. Chiganova, Colloid J. 64, 474 (2002)

    Article  Google Scholar 

  21. J. Možina, J. Diaci, Appl. Phys. B 105, 557 (2011)

    Article  ADS  Google Scholar 

  22. J. Možina, R. Hrovatin, Prog. Nat. Sci. 6, S709 (1996)

    Google Scholar 

  23. R.A. Ganeev, A.I. Ryasnyanski, S.R. Kamalov, M.K. Kodirov, T.J. Usmanov, Phys. D Appl. Phys. 34, 1602 (2001)

    Article  ADS  Google Scholar 

  24. V.A. Podolskiy, A.K. Sarychev, E.E. Narimanov, V.M. Shalaev, J. Opt. A 7, 32 (2005)

    Article  ADS  Google Scholar 

  25. V.A. Markel, A.K. Sarychev, Phys. Rev. B 75, 085426 (2007)

    Article  ADS  Google Scholar 

  26. A.A. Govyadinov, V.A. Markel, Phys. Rev. B 78, 035403 (2008)

    Article  ADS  Google Scholar 

  27. W.H. Weber, G.W. Ford, Phys. Rev. B 70, 125429 (2004)

    Article  ADS  Google Scholar 

  28. S.V. Karpov, I.L. Isaev, A.P. Gavrilyuk, A.S. Grachev, V.S. Gerasimov, Colloid J. 71, 314 (2009)

    Google Scholar 

  29. L.D. Landau, E.M. Lifshits, The Theory of Elasticity. Course of Theoretical Physics (Nauka, Moskow, 1987)

    Google Scholar 

  30. Y.S. Barash, The van der Waals Forces (Nauka, Moskow, 1988)

    Google Scholar 

  31. F. Claro, R. Rojas, Appl. Phys. Lett. 65, 2643 (1994)

    Article  Google Scholar 

  32. V.A. Markel, V.M. Shalaev, E.B. Stechel, W. Kim, R.L. Armstrong, Phys. Rev. B 53, 2425 (1996)

    Article  ADS  Google Scholar 

  33. V.A. Markel, V.N. Pustovit, S.V. Karpov, A.V. Obuschenko, V.S. Gerasimov, I.L. Isaev, Phys. Rev. B 70, 054202 (2004)

    Article  ADS  Google Scholar 

  34. A.E. Ershov, I.L. Isaev, P.N. Semina, V.A. Markel, S.V. Karpov, Phys. Rev. B 85, 045421-1 (2012)

    Article  ADS  Google Scholar 

  35. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  36. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971)

    Google Scholar 

  37. M. Otter, Z. Phys. 161, 539 (1961)

    Article  ADS  Google Scholar 

  38. J.C. Miller, Philos. Mag. 20, 1115 (1969)

    Article  ADS  Google Scholar 

  39. O.B. Wright, Phys. Rev. B 49, 9985 (1994)

    Article  ADS  Google Scholar 

  40. T. Castro, R. Reifenberger, E. Choi, R.P. Andres, Phys. Rev. B 42, 8548 (1990)

    Article  ADS  Google Scholar 

  41. C.-K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)

    Article  ADS  Google Scholar 

  42. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilios, F. Vallée, Phys. Rev. B 61, 16956 (2000)

    Article  ADS  Google Scholar 

  43. R. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)

    Article  ADS  Google Scholar 

  44. Y.A. Frenkel, The Kinetic Theory of Liquids (Nauka, Moscow, 1975)

    Google Scholar 

  45. A.A. Chastov, O.L. Lebedev, J. Exp. Theor. Phys. 58, 848 (1970)

    Google Scholar 

  46. Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. Javier García de Abajo, P. Nordlander, N.J. Halas, Nano Lett. 13, 1736 (2013)

    Google Scholar 

  47. V.K. Pustovalov, I.A. Khorunzhii, D.S. Bobuchenko, Bull. Acad. Sci. USSR Phys. 52, 1847 (1988)

    Google Scholar 

  48. M.D. McMahon, R. Lopez, H.M. Meyer III, L.C. Feldman, R.F. Haglund Jr., Appl. Phys. B 80(7), 915 (2005)

    Article  ADS  Google Scholar 

  49. W. Cao, H.E. Elsayed-Ali, Mater. Lett. 63, 26–2263 (2009)

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Prof. V. A. Markel (University of Pennsylvania) for supplying program codes for realization of the coupled dipole method for polydisperse metal nanoparticle aggregates. This research was supported by the Russian Academy of Sciences under the Grants 24.29, 24.31, III.9.5, 43, SB RAS-SFU (101); Ministry of Education and Science of Russian Federation under Contract 14.B37.21.0457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Karpov.

Appendix: The heating rate of particles in a polydisperse dimer

Appendix: The heating rate of particles in a polydisperse dimer

Consider a polydisperse dimer (R 2 < R 1, R 1, R 2 are the radii of dimer particles) in the external field E 0 . The heating rate is determined by the absorbed power density

$${\text{d}}T/{\text{d}}t \sim W/R^{3} ,\quad W \sim |{\mathbf{d}}|^{2} \text{Im} \left( {\frac{1}{{\alpha^{*} }}} \right)$$
(37)

where W is the power of radiation absorbed by the particle. Compare the heating rates of the particles. The interaction of particles will be considered in dipole approximation. We assume that

$$(\omega_{\text{pl}} )_{1,2} \gg \Upgamma_{2} > \Upgamma_{1} \quad u\quad (\omega_{\text{pl}} )_{1} \approx (\omega_{\text{pl}} )_{2} = (\omega_{\text{pl}} )$$
(38)

that is, the surface plasmon resonances of both particles differ very little. Hence, for the dipole moments of the particles, we can write down:

$$|{\mathbf{d}}_{1} | = \varepsilon_{m} |\alpha_{1} | \cdot |{\mathbf{E}}_{0} + {\mathbf{E}}_{2} |,\quad |{\mathbf{d}}_{2} | = \varepsilon_{m} |\alpha_{2} | \cdot |{\mathbf{E}}_{0} + {\mathbf{E}}_{1} |,\quad {\mathbf{E}}_{1} = \frac{{2{\mathbf{d}}_{1} }}{{\varepsilon_{m} r_{12}^{3} }},\quad {\mathbf{E}}_{2} = \frac{{2{\mathbf{d}}_{2} }}{{\varepsilon_{m} r_{12}^{3} }},$$
(39)

where E 1 and E 2 are the fields produced by the first and the second particle at the location of the neighboring one, r 12 = R 1 + R 2 + h ij , h ij is the interparticle gap. Substituting (39) into (37) yields

$$\frac{{W_{1} }}{{R_{1}^{3} }}\sim \varepsilon_{m}^{2} \frac{{\left| {\alpha_{1} } \right|^{2} }}{{R_{1}^{3} }}|{\mathbf{E}}_{0} |^{2} \left| {1 + \frac{{2\alpha_{2} }}{{r_{12}^{3} }}} \right|^{2} \cdot \text{Im} \left( {\frac{1}{{\alpha_{1}^{*} }}} \right),\quad \frac{{W_{2} }}{{R_{2}^{3} }}\sim \varepsilon_{m}^{2} \frac{{\left| {\alpha_{2} } \right|^{2} }}{{R_{2}^{3} }}|{\mathbf{E}}_{0} |^{2} \left| {1 + \frac{{2\alpha_{1} }}{{r_{12}^{3} }}} \right|^{2} \cdot \text{Im} \left( {\frac{1}{{\alpha_{2}^{*} }}} \right).$$
(40)

Polarizability of the particles \(\alpha_{1,2} = \chi_{1,2}^{\prime } - i\chi_{1,2}^{\prime \prime }\) at ω ≈ ω pl can be represented as [4]:

$$\alpha_{1,2} = - i\chi_{1,2}^{\prime \prime } ,\quad \chi_{1,2}^{\prime \prime } = r_{1,2}^{3} \frac{{\omega_{\text{pl}} }}{{\Upgamma_{1,2} }}.$$
(41)

The specific absorbed power is found by substituting (41) into (40):

$$\frac{{W_{1} }}{{R_{1}^{3} }}\sim \varepsilon_{m}^{2} \left( {\frac{{\omega_{\text{pl}} }}{{\Upgamma_{1} }}} \right)|{\mathbf{E}}_{0} |^{2} \left| {1 - i\frac{{2\omega_{\text{pl}} }}{{\Upgamma_{2} }} \cdot \frac{{r_{2}^{3} }}{{r_{ij}^{3} }}} \right|^{2} ,\quad \frac{{W_{2} }}{{R_{2}^{3} }}\sim \varepsilon_{m}^{2} \left( {\frac{{\omega_{\text{pl}} }}{{\Upgamma_{2} }}} \right)|{\mathbf{E}}_{0} |^{2} \left| {1 - i\frac{{2\omega_{\text{pl}} }}{{\Upgamma_{1} }} \cdot \frac{{r_{1}^{3} }}{{r_{ij}^{3} }}} \right|^{2} .$$
(42)

Hence, the heating rates will relate as:

$$\frac{{W_{2} /R_{2}^{3} }}{{W_{1} /R_{1}^{3} }} \approx \frac{{\Upgamma_{2} }}{{\Upgamma_{1} }} \cdot \frac{{\Upgamma_{1}^{2} + 4\omega_{\text{pl}}^{2} (R_{1} /r_{12} )^{6} }}{{\Upgamma_{2}^{2} + 4\omega_{\text{pl}}^{2} (R_{2} /r_{12} )^{6} }}.$$
(43)

Using (43) for our case, we obtain: R 1 = 8 nm, R 2 = 2 nm, r 12 = 11 nm, ω pl = 4.7 × 1015 s−1, \(\Upgamma_{1,2} = \Upgamma_{\infty } + \frac{{v_{\rm F} }}{{r_{1,2} }},\,\Upgamma_{\infty } = 1.5 \times 10^{14} \,s^{ - 1} ,\,\Upgamma_{1} = 3.25 \times 10^{14} \,s^{ - 1} ,\,\Upgamma_{2} = 8.5 \times 10^{14} \,s^{ - 1} .\) As the result (W 2/R 32 )/(W 1/R 31 ) ≈ 47. That is, the initial heating rate of the small particle is much higher than that of the large particle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ershov, A.E., Gavrilyuk, A.P., Karpov, S.V. et al. Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles. Appl. Phys. B 115, 547–560 (2014). https://doi.org/10.1007/s00340-013-5636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5636-6

Keywords

Navigation