Skip to main content
Log in

Modelling the excitation field of an optical resonator

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for “simple” astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Arnaud, H. Kogelnik, Appl. Opt. 8, 1687 (1969), ISSN 0003-6935, http://www.opticsinfobase.org/abstract.cfm?URI=ao-8-8-1687

  2. D.Z. Anderson, Appl. Opt. 23, 2944 (1984), ISSN 0003-6935, http://www.ncbi.nlm.nih.gov/pubmed/18213100.

  3. Y. St-Amant, D. Gariépy, D. Rancourt, Appl. Opt. 43, 5691 (2004)

    Article  ADS  Google Scholar 

  4. D.R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964a), ISSN 0003-6935, http://www.opticsinfobase.org/abstract.cfm?URI=ao-3-4-523

  5. F. Bayer-Helms, Appl. Opt. 23, 1369 (1984)

    Article  ADS  Google Scholar 

  6. J.T. Hodges, L.J. Patrick, R.D. van Zee, J. Chem. Phys. 105, 10278 (1996)

    Article  ADS  Google Scholar 

  7. K.K. Lehmann, D. Romanini, J. Chem. Phys. 105, 10263 (1996)

    Article  ADS  Google Scholar 

  8. A. Kostenbauder, Y. Sun, A.E. Siegman, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 1780 (1997), ISSN 1084-7529

  9. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  10. R.J. Glauber, Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford, 1980)

    Google Scholar 

  12. J. Courtois, A.K. Mohamed, D. Romanini, Phys. Rev. A (accepted, 2013)

  13. D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964)

    Article  ADS  Google Scholar 

  14. J. Courtois, A.K. Mohamed, D. Romanini, Opt Express 18, 4845 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-5-4845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Romanini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanini, D. Modelling the excitation field of an optical resonator. Appl. Phys. B 115, 517–531 (2014). https://doi.org/10.1007/s00340-013-5632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5632-x

Keywords

Navigation