Skip to main content
Log in

Controllable magnetic solitons excitations in an atomic chain of spinor Bose–Einstein condensates confined in an optical lattice

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose an experimental scheme to show that the nonlinear magnetic solitary excitations can be achieved in an atomic spinor Bose–Einstein condensate confined in a blue-detuned optical lattice. Through exact theoretical calculations, we find that the magnetic solitons can be generated by the static magnetic dipole–dipole interaction (MDDI), of which the interaction range can be well controlled. We derive the existence conditions of the magnetic solitons under the nearest-neighboring, the next-nearest-neighboring approximations as well as the long-range consideration. It is shown that the long-range feature of the MDDI plays an important role in determining the existence of magnetic solitons in this system. In addition, to facilitate the experimental observation, we apply an external laser field to drive the lattice, and the existence regions for the magnetic soliton induced by the anisotropic light-induced dipole–dipole interaction are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.S. Kevin, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)

    Article  ADS  Google Scholar 

  2. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 296, 1290 (2002)

    Article  ADS  Google Scholar 

  3. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, New J. Phys. 5, 73 (2003)

    Article  ADS  Google Scholar 

  4. E.A. Ostrovskaya, J. Abdullaev, A.S. Desyatnikov, M.D. Fraser, Y.S. Kivshar, Phys. Rev. A 86, 013636 (2012)

    Article  ADS  Google Scholar 

  5. D. Poletti, T.J. Alexander, E.A. Ostrovskaya, B. Li, Y.S. Kivshar, Phys. Rev. Lett. 101, 150403 (2008)

    Article  ADS  Google Scholar 

  6. R. Dum, J.I. Cirac, M. Lewenstein, P. Zoller, Phys. Rev. Lett. 80, 2972 (1998)

    Article  ADS  Google Scholar 

  7. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  8. J. Denschlag et al., Science 287, 97 (2000)

    Article  ADS  Google Scholar 

  9. B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)

    Article  ADS  Google Scholar 

  10. O. Zobay, S. Pötting, P. Meystre, E.M. Wright, Phys. Rev. A 59, 643 (1999)

    Article  ADS  Google Scholar 

  11. S. Pötting, P. Meystre, E.M. Wright, arXiv: cond-mat/0009289v2

  12. G.L. Alfimov, V.V. Konotop, M. Salerno, Europhys. Lett. 58, 7 (2002)

    Article  ADS  Google Scholar 

  13. X. Yang, L. Dong, G. Yin, Appl. Phys. B 95, 179 (2009)

    Article  ADS  Google Scholar 

  14. P. Rose, T. Richter, B. Terhalle, J. Imbrock, F. Kaiser, C. Denz, Appl. Phys. B 89, 521 (2007)

    Article  ADS  Google Scholar 

  15. T.J. Alexander, Y.S. Kivshar, Appl. Phys. B 82, 203 (2006)

    Article  ADS  Google Scholar 

  16. J.K. Kjems, M. Steiner, Phys. Rev. Lett. 41, 1137 (1978)

    Article  ADS  Google Scholar 

  17. K.M. Leung, D.W. Hone, D.L. Mills, P.S. Riseborough, S.E. Trullinger, Phys. Rev. B 21, 4017 (1980)

    Article  ADS  Google Scholar 

  18. H.J. Mikeska, J. Phys. C 13, 2913 (1980)

    Article  ADS  Google Scholar 

  19. S. Rakhmanova, D.L. Mills, Phys. Rev. B 54, 9225 (1996)

    Article  ADS  Google Scholar 

  20. A.M. Kosevich, B.A. Ivanoy, A.S. Kovalev, Phys. Rep. 194, 117 (1990)

    Article  ADS  Google Scholar 

  21. J. Tjon, J. Wright, Phys. Rev. B 15, 3470 (1977)

    Article  ADS  Google Scholar 

  22. Z.D. Li, L. Li, W.M. Liu, J.Q. Liang, T. Ziman, Phys. Rev. E 68, 036102 (2003)

    Article  ADS  Google Scholar 

  23. N.N. Huang, Z.Y. Chen, Z.Z. Liu, Phys. Rev. Lett. 75, 1395 (1995)

    Article  ADS  Google Scholar 

  24. H. Pu, W.P. Zhang, P. Meystre, Phys. Rev. Lett. 87, 140405 (2001)

    Article  ADS  Google Scholar 

  25. W.P. Zhang, H. Pu, C. Search, P. Meystre, Phys. Rev. Lett. 88, 060401 (2002)

    Article  ADS  Google Scholar 

  26. K. Gross, C.P. Search, H. Pu, W.P. Zhang, P. Meystre, Phys. Rev. A 66, 033603 (2002)

    Article  ADS  Google Scholar 

  27. S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998)

    Article  ADS  Google Scholar 

  28. G.P. Zheng, J. Phys. B At. Mol. Opt. Phys. 40, 4493 (2007)

    Article  ADS  Google Scholar 

  29. Z.D. Li, P.B. He, L. Li, J.Q. Liang, W.M. Liu, Phys. Rev. A 71, 053611 (2005)

    Article  ADS  Google Scholar 

  30. Z.W. Xie, W.P. Zhang, S.T. Chui, W.M. Liu, Phys. Rev. A 69, 053609 (2004)

    Article  ADS  Google Scholar 

  31. B.J. Da̧browska-Wüster, E.A. Ostrovskaya, T.J. Alexander, Y.S. Kivshar, Phys. Rev. A 75, 023617 (2007)

    Article  ADS  Google Scholar 

  32. Z. Li, A.-X. Zhang, J. Ma, J.-K. Xue, Phys. Lett. A 374, 1401 (2010)

    Article  ADS  MATH  Google Scholar 

  33. T. Akatsuka, M. Takamoto, H. Katori, Nat. Phys. 4, 954 (2008)

    Article  Google Scholar 

  34. X.D. Zhao, Z.W. Xie, W.P. Zhang, Phys. Rev. B 76, 214408 (2007)

    Article  ADS  Google Scholar 

  35. S. Giovanazzi, A. Giovanazzi, T. Pfau, Phys. Rev. Lett. 89, 130401 (2002)

    Article  ADS  Google Scholar 

  36. A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, Phys. Rev. Lett. 97, 250402 (2006)

    Article  ADS  Google Scholar 

  37. A. Maluckov, G. Gligorić, L. Hadžievski, B.A. Malomed, T. Pfau, Phys. Rev. Lett. 108, 140402 (2012)

    Article  ADS  Google Scholar 

  38. A. Maluckov, G. Gligorić, L. Hadžievski, B.A. Malomed, T. Pfau, Phys. Rev. A 87, 023623 (2013)

    Article  ADS  Google Scholar 

  39. D. Donnelly, Phys. Rev. B 52, 1042 (1995)

    Article  ADS  Google Scholar 

  40. V.V. Konotop, M. Salerno, S. Takeno, Phys. Rev. E 56, 7240 (1997)

    Article  ADS  Google Scholar 

  41. R. Lai, A.J. Sievers, Phys. Rep. 314, 147 (1999)

    Article  ADS  Google Scholar 

  42. R. Lai, S.A. Kiselev, A.J. Sievers, Phys. Rev. B 56, 5345 (1997)

    Article  ADS  Google Scholar 

  43. B.J. Eggleton, R.E. Slusher, de C.M. Sterke, P.A. Krug, J.E. Sipe, Phys. Rev. Lett. 76, 1627 (1996)

    Article  ADS  Google Scholar 

  44. M.J. Steel, W.P. Zhang, arXiv: cond-mat/9810284

  45. S. Pötting, O. Zobay, P. Meystre, E.M. Wright, J. Mod. Opt. 47, 2653 (2000)

    Article  ADS  Google Scholar 

  46. Z.L. Duan, M.J. Steel, A.T. Xu, W.P. Zhang, Chin. Sci. Bull. 54, 4182 (2009)

    Article  Google Scholar 

  47. J. Javanainen, Phys. Rev. Lett. 72, 2375 (1994)

    Article  ADS  Google Scholar 

  48. Z.W. Xie, W.P. Zhang, S.T. Chui, W.M. Liu, Phys. Rev. A 69, 053609 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 10588402 and 11104075, 11104076, 11374003, the National Basic Research Program of China (973 Program) under Grant No. 2011CB921604, the Educational Commission of Henan Province of China under Grant No. 01026631082, the Postdoctoral Research Foundation of Henan Province under Grant No. 01026500201, the PhD Start-up Fund 01026500103 Shanghai Leading Academic Discipline Project under Grant No. B480, the Specialized Research Fund for the Doctoral Program of Higher Education No. 20110076120004, the Fundamental Research Funds for the Central Universities, and the ‘Chen Guang’ project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant No. 10CG24 and sponsored by Shanghai Rising-Star Program under Grant No. 12QA1401000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Dong Zhao.

Appendix

Appendix

  1. (1)

    For the NN approximation, the nonlinear equation of motion for ϕ n can be written as

    $$\begin{aligned} i\frac{\hbox{d}\phi_{n}}{\hbox{d}t} &=\gamma_{B}B_{z}\phi_{n}+\underset{j=n\pm1}{\sum }2SJ_{nj}^{{\rm mag}}\sqrt{1-\left\vert \phi_{j}\right\vert ^{2}}\phi_{n}\\ &\quad+\underset{j=n\pm1}{\sum}4SJ_{nj}\sqrt{1-\left\vert \phi_{n}\right\vert ^{2}}\phi_{j}. \end{aligned}$$
    (24)

    In above equation, the terms \(\sqrt{1-\left\vert \phi_{j}\right\vert ^{2}}\approx1-\frac{1}{2}\left\vert \phi_{j}\right\vert ^{2}\) for small distortion from the ground state. Using the slowly varying envelope approximation or long wavelength limit, we have

    $$\frac{\hbox{d}^{2}\phi(y,t)}{\hbox{d}y^{2}}|_{y=y_{n}}\approx\frac{\phi_{n+1}+\phi _{n-1}-2\phi_{n}}{a^{2}}.$$
    (25)

    where a is the lattice constant. Then, we can obtain the continuum limit NLSE for ϕ(yt), namely

    $$\begin{aligned} i\frac{\hbox{d}\phi(y,t)}{\hbox{d}t} &=4SJ_{01}a^{2}\frac{\hbox{d}^{2}\phi(y,t)}{\hbox{d}y^{2}}\\ &\quad+\left( \gamma_{B}B_{z}+4SJ_{01}^{{\rm mag}}+8SJ_{01}\right) \phi (y,t)\\ &\quad-2S\left( J_{01}^{{\rm mag}}+2J_{01}\right) \left\vert \phi(y,t)\right\vert ^{2}\phi(y,t). \end{aligned}$$
    (26)
  2. (2)

    For the NNN approximation, we set \(\alpha_{j}=J_{0j}^{{\rm mag}}/J_{0j}, A_{2}=J_{02}/J_{01}, \eta=\gamma_{B}B_{z}+4S\left(J_{01}^{{\rm mag}}+2J_{01}+J_{02}^{{\rm mag}}-2J_{02}\right).\) Additionally, another second-order spatial derivative is introduced

    $$\frac{\hbox{d}^{2}\phi(y,t)}{\hbox{d}y^{2}}|_{y=y_{n}}\approx\frac{\phi_{n+2}+\phi _{n-2}-2\phi_{n}}{(2a)^{2}}.$$
    (27)

    We can easily get

    $$\begin{aligned} i\frac{\hbox{d}\phi(y,t)}{\hbox{d}t} &=4SJ_{01}\left( 1-4A_{2}\right) a^{2}{\frac{\hbox{d}^{2}\phi(y,t)}{\hbox{d}y^{2}}}+\eta\phi(y,t)\\ &\quad-2SJ_{01}\left(\alpha_{1}+A_{2}\alpha_{2}+2-2A_{2}\right) \left\vert \phi(y,t)\right\vert ^{2}\phi(y,t). \end{aligned}$$
    (28)

    In the first case, i.e., the spinor condensate is loaded into a blue-detuned optical lattice and the external laser used to induce the LDDI is absent, we have

    $$J_{01}^{{\rm opt}}=0,J_{01}=\frac{1}{2}J_{01}^{{\rm mag}}\Longrightarrow\alpha_{1} =\alpha_{2}=2.$$
    (29)

    Then, Eq. (28) can be rewritten as

    $$\begin{aligned} i\frac{\hbox{d}\phi(y,t)}{\hbox{d}t} &=2SJ_{01}^{{\rm mag}}\left( 1-4A_{2}\right) a^{2} \frac{\hbox{d}^{2}\phi(y,t)}{\hbox{d}y^{2}}+\eta\phi(y,t)\\ &\quad-4SJ_{01}^{{\rm mag}}\left\vert \phi(y,t)\right\vert ^{2}\phi(y,t). \end{aligned}$$
    (30)

    Second, the external laser is present and strong enough, so that

    $$J_{01}^{{\rm opt}}\gg J_{01}^{{\rm mag}}\Longrightarrow\alpha_{1}=\alpha_{2}\approx0.$$
    (31)

    Then, we can obtain

    $$\begin{aligned} i\frac{\hbox{d}\phi(y,t)}{\hbox{d}t} &=4SJ_{01}\left( 1-4A_{2}\right) \frac{\hbox{d}^{2} \phi(y,t)}{\hbox{d}y^{2}}a^{2}+\eta\phi(y,t)\\ &\quad-4SJ_{01}\left( 1-A_{2}\right) \left\vert \phi(y,t)\right\vert ^{2} \phi(y,t). \end{aligned}$$
    (32)
  3. (3)

    For the long-range case, it is a little complicated. First, using \(\sqrt{1-\left\vert \phi_{j}\right\vert ^{2}}\approx1-\frac{1}{2}\left\vert \phi_{j}\right\vert ^{2}\) we can rewrite the nonlinear motion equation of ϕ n as

    $$\begin{aligned} i\frac{\hbox{d}\phi_{n}}{\hbox{d}t} &=\left[ \gamma_{B}B_{z}+\underset{j\neq n}{\sum }2SJ_{nj}^{{\rm mag}}\right] \phi_{n}-\underset{j\neq n}{\sum}SJ_{nj}^{z}\left\vert \phi_{j}\right\vert ^{2}\phi_{n}\\ &\quad-\underset{j\neq n}{\sum}4SJ_{nj}\phi_{j}(-1)^{j-n}+\underset{j\neq n} {\sum}2SJ_{nj}\left\vert \phi_{n}\right\vert ^{2}\phi_{j}(-1)^{j-n}. \end{aligned}$$
    (33)

    Then, we set \(\phi_{n}\rightarrow\phi(y,t), J_{nj}^{{\rm mag}}\rightarrow J^{{\rm mag}}(y-y^{^{\prime}}), J_{nj}\rightarrow J(y-y^{^{\prime}}), \gamma _{B}B_{z}+\underset{j\neq n}{\sum}2SJ_{nj}^{{\rm mag}}\rightarrow\omega(y).\) Consider the discreteness of the optical lattice, we can treat the symbolic terms as below

    $$(-1)^{j-n}=\cos\left[(j-n)\pi\right] =\cos\left[\frac{2\pi}{\lambda_{L}}\left( y-y^{^{\prime}}\right) \right].$$
    (34)

    After changing the sum to integration, we get

    $$\begin{aligned} i\frac{\hbox{d}\phi(y,t)}{\hbox{d}t}&=\omega(y)\phi(y,t) \\ &\quad-\frac{2S}{\lambda_{L}}\phi(y,t)\int\limits_{-\infty}^{\infty} J^{{\rm mag}}(y-y^{^{\prime}})\phi^{2}(y^{^{\prime}},t)\hbox{d}y^{^{\prime}}\\ &\quad-\frac{8S}{\lambda_{L}}\int\limits_{-\infty}^{\infty}J(y-y^{^{\prime} })\phi(y^{^{\prime}},t)\cos\left[ \frac{2\pi}{\lambda_{L}}\left( y-y^{^{\prime}}\right) \right] \hbox{d}y^{^{\prime}}\\ &\quad+\frac{4S}{\lambda_{L}}\phi^{2}(y,t)\int\limits_{-\infty}^{\infty }J(y-y^{^{\prime}})\phi(y^{^{\prime}},t)\cos\left[ \frac{2\pi}{\lambda_{L} }\left( y-y^{^{\prime}}\right) \right] \hbox{d}y^{^{\prime}}. \end{aligned}$$
    (35)

    Denoting \(y-y^{^{\prime}}=\xi\), the \(\phi(y^{^{\prime}},t)\) can be expanded as

    $$\phi(y^{^{\prime}},t)=\phi(y,t) +\frac{\partial\phi( y,t) }{\partial y}\xi+\frac{1}{2!}\frac{\partial^{2}\phi(y,t) }{\partial y^{2}}\xi^{2}+\cdots.$$
    (36)

    Taking above series into Eq. (35) (the integration variable is changed, i.e., \(\hbox{d}y^{\prime}\rightarrow-{\rm d}\xi\)) and using the assumption ϕ(y,t)/ y≪ 1, finally we get

    $$\begin{aligned} i\frac{\hbox{d}\phi(y,t)}{\hbox{d}t}&=-2\beta_{1}\frac{\partial^{2} \phi\left( y,t\right)}{\partial y^{2}}+\left[\omega(y)-4\beta_{0}\right] \phi(y,t)\\ &\quad+\left(2\beta_{0}-\gamma\right) \left\vert \phi(y,t)\right\vert ^{2} \phi(y,t), \end{aligned}$$
    (37)

    where the coefficients are defined as below

    $$\beta_{n}=\frac{2S}{\lambda_{L}}\int\limits_{-\infty}^{\infty}J(\xi)\xi^{2n} \cos\left(\frac{2\pi}{\lambda_{L}}\xi\right)\hbox{d}\xi, \quad n=0,1,$$
    (38)
    $$\gamma=\frac{2S}{\lambda_{L}}\int\limits_{-\infty}^{\infty}J^{{\rm mag}}(\xi)\hbox{d}\xi.$$
    (39)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, XD., Geng, Z., Zhao, X. et al. Controllable magnetic solitons excitations in an atomic chain of spinor Bose–Einstein condensates confined in an optical lattice. Appl. Phys. B 115, 451–460 (2014). https://doi.org/10.1007/s00340-013-5625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5625-9

Keywords

Navigation