Skip to main content
Log in

Fiber-optic sensor based on evanescent wave absorbance around 2.7 μm for determining water content in polar organic solvents

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The feasibility of sapphire fiber-optic sensors based on evanescent wave absorption spectroscopy in the infrared range for quantitative determination of water content in polar organic solvents has been investigated. Evanescent wave absorption spectra of sapphire fiber-optic sensors in glycerol, ethanol, and glycol with different water concentrations obtained and analyzed, respectively. Evanescent absorbance of the sensors in those organic solvents has been utilized to implement for in situ monitoring water concentration in organic solvents. The evanescent absorbance of sensors in glycerol and glycol has been found to vary linearly with water content in the range 0–30 % and in ethanol in the range 0–10 %, respectively. The fiber-optic sensors based on evanescent absorbance for monitoring water concentrations in those organic solvents are acceptably accurate, cost-effective, and reliable. Some methods to improve the accuracy of predicated water content in those organic solvents are also suggested. Overall, the results demonstrate that the sapphire fiber-optic sensor based on evanescent absorption spectroscopy is a promising candidate for prediction of water content in polar organic solvents in on-line and remote situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Fisher, Angew. Chem. 48, 394 (1935)

    Article  Google Scholar 

  2. G. Casalbore-Miceli, A. Zanelli, Langmuir 21, 9704 (2005)

    Article  Google Scholar 

  3. A.A. Petushkov, S.M. Shilov, V.N. Pak, J. Lumin. 116, 127 (2006)

    Article  Google Scholar 

  4. C. Daniel, M. Katsuya, K. Yuka, H. Hideaki, S. Shinichi, S. Koji, Anal. Chem. 73, 5339 (2001)

    Article  Google Scholar 

  5. X. Yang, C.G. Niu, Z.J. Shang, G.L. Shen, R.Q. Yu, Sens. Actuator B Chem. 75, 43 (2001)

    Article  Google Scholar 

  6. F. Gao, F. Luo, X. Chen, W. Yao, J. Yin, Z. Yao, L. Wang, Microchim. Acta 166, 163 (2009)

    Article  Google Scholar 

  7. Y. Liu, S. Qu, Y. Li, Appl. Phys. B Laser Opt. 110, 585 (2013)

    Article  ADS  Google Scholar 

  8. R. Orghici, U. Willer, M. Gierszewska, S.R. Waldvogel, W. Schade, Appl. Phys. B Laser Opt. 90, 355 (2008)

    Article  ADS  Google Scholar 

  9. P.S. Kumar, C.P.G. Vallabhan, V.P.N. Nampoori, V.N.S. Pillai, P. Radhakrishnan, J. Opt. A Pure Appl. Opt. 4, 247 (2002)

    Article  ADS  Google Scholar 

  10. R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, Appl. Phys. B Laser Opt. 105, 3 (2011)

    Article  ADS  Google Scholar 

  11. V. Ruddy, B.D. Maccraith, J.A. Murphy, J. Appl. Phys. 67, 6070 (1990)

    Article  ADS  Google Scholar 

  12. P. Wang, G. Brambilla, M. Ding, Opt. Lett. 36, 2233 (2011)

    Article  ADS  Google Scholar 

  13. B.D. Gupta, H. Dodeja, A.K. Tomar, Opt. Quantum Electronics. 28(11), 1629 (1996)

    Article  Google Scholar 

  14. S. Tao, S. Gong, J.C. Fanguy, X. Hu, Sens. Actuators B Chem. 120, 724 (2007)

    Article  Google Scholar 

  15. A. Armin, B.M. Soltanolkotabi, P. Feizollah, Sens. Actuators A Phys. 165, 181 (2011)

    Article  Google Scholar 

  16. Y. Ooyama, M. Sumomogi, T. Nagano, K. Kushimoto, K. Komaguchi, I. Imace, Y. Harima, Org. Biomol. Chem. 9, 1314 (2011)

    Article  Google Scholar 

  17. S. Cha, M.G. Choi, H.R. Jeon, S.K. Chang, Sens. Actuators B Chem. 157, 14 (2011)

    Article  Google Scholar 

  18. S.K. Srivastava, R. Verma, B.D. Gupta, Sens. Actuators B Chem. 153, 194 (2011)

    Article  Google Scholar 

  19. J. Zhao, A. Hashmi, J. Xu, W. Xue, Appl. Phys. Lett. 100, 243109 (2012)

    Article  ADS  Google Scholar 

  20. N.J. Harrick, Internal reflection spectroscopy (Harrick Scientific Corp, New York, 1979)

    Google Scholar 

  21. T. Lee, A.G. Nibu, K.P. Suresh, Opt. Lett. 26, 1541 (2001)

    Article  ADS  Google Scholar 

  22. J.P. Conzen, J. Burck, H.J. Ache, Appl. Spectrosc. 47, 753 (1993)

    Article  ADS  Google Scholar 

  23. F.B. Xiong, D. Sisler, Opt. Commun. 283, 1326 (2010)

    Article  ADS  Google Scholar 

  24. M.K. Ahmed, M.P. McLeod, J. Nezivar, A.W. Giuliani, Spectroscopy 24, 601 (2010)

    Article  Google Scholar 

  25. J. Beauchaine, J. Briggs, Spectroscopy 22, 41 (2007)

    Google Scholar 

  26. S.F. Dong, H. Ding, Y.Y. Liu, X.F. Qi, Appl. Opt. 51, C152 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Natural Science Foundation of China (Grant No. 11104234), the SRF for ROCS, SEM and the S&T plan projects of Fujian Provincial Education Department (Grant No. JA12242, JA12252). The author, F. B. Xiong, thanks Prof. N. Djeu, University of South Florida, for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. B. Xiong or W. Z. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, F.B., Zhu, W.Z., Lin, H.F. et al. Fiber-optic sensor based on evanescent wave absorbance around 2.7 μm for determining water content in polar organic solvents. Appl. Phys. B 115, 129–135 (2014). https://doi.org/10.1007/s00340-013-5583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5583-2

Keywords

Navigation