Skip to main content
Log in

Optical sensors for determination of water in the organic solvents: a review

  • Review Papers
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In organic solvents, water is the most frequently found impurity. It interferes with many reactions, so it can be a reason for importance of its determination. Karl Fischer titration is a commonly used method for this purpose. However, some disadvantages particularly the inability of continuous analysis limit its applications. The current study reviews the optical sensors/nanosensors developed for the determination of water and demonstrates their applications in checking water impurity in organic solvents. Such optical sensors are highly demanded in the sensing procedures due to their simplicity and low price. Almost these methods do not need any expensive or complicated vehicles. This review focuses on optical sensors/nanosensors for the quantification of water content in organic solvents from 2016 to 2020 and is an update of Jung et al. work in 2016. The reported sensors/nanosensors are categorized into two types: spectrophotometry and spectrofluorimetry; each of them is classified based on the used materials for water sensing. The details of each reported method are explained in this review in detail, and their analytical characteristics are given as a table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from the publisher

Fig. 2

Reproduced with permission from the publisher

Fig. 3

Reproduced with permission from the publisher

Fig. 4

Reproduced with permission from the publisher

Fig. 5

Reproduced with permission from the publisher

Fig. 6

Reproduced with permission from the publisher

Fig. 7

Reproduced with permission from the publisher

Fig. 8

Reproduced with permission from the publisher

Fig. 9

Reproduced with permission from the publisher

Similar content being viewed by others

References

  1. Y.Y. Liang, Anal. Chem. 62(22), 2504–2506 (1990). https://doi.org/10.1021/ac00221a018

    Article  CAS  Google Scholar 

  2. S.-I. Ohira, K. Goto, K. Toda, P.K. Dasgupta, Anal. Chem. 84(20), 8891–8897 (2012). https://doi.org/10.1021/ac3024069

    Article  CAS  PubMed  Google Scholar 

  3. C.-G. Niu, P.-Z. Qin, G.-M. Zeng, X.-Q. Gui, A.-L. Guan, Anal. Bioanal. Chem. 387(3), 1067–1074 (2007). https://doi.org/10.1007/s00216-006-1016-y

    Article  CAS  PubMed  Google Scholar 

  4. H.S. Jung, P. Verwilst, W.Y. Kim, J.S. Kim, Chem. Soc. Rev. 45(5), 1242–1256 (2016). https://doi.org/10.1039/C5CS00494B

    Article  CAS  PubMed  Google Scholar 

  5. M.D. Ward, Chem. Soc. Rev. 26(5), 365–375 (1997). https://doi.org/10.1039/CS9972600365

    Article  CAS  Google Scholar 

  6. X. Liang, Q. Zhang, Sci. China Mater. 60(11), 1093–1101 (2017). https://doi.org/10.1007/s40843-016-5170-2

    Article  CAS  Google Scholar 

  7. A.C. Sedgwick, L. Wu, H.-H. Han, S.D. Bull, X.-P. He, T.D. James, J.L. Sessler, B.Z. Tang, H. Tian, J. Yoon, Chem. Soc. Rev. 47(23), 8842–8880 (2018). https://doi.org/10.1039/C8CS00185E

    Article  CAS  PubMed  Google Scholar 

  8. S.V. Eliseeva, J.-C.G. Bünzli, Chem. Soc. Rev. 39(1), 189–227 (2010). https://doi.org/10.1039/B905604C

    Article  CAS  PubMed  Google Scholar 

  9. Y. Hong, J.W. Lam, B.Z. Tang, Chem. Soc. Rev. 40(11), 5361–5388 (2011). https://doi.org/10.1039/C1CS15113D

    Article  CAS  PubMed  Google Scholar 

  10. J. Hoche, H.-C. Schmitt, A. Humeniuk, I. Fischer, R. Mitrić, M.I. Röhr, Phys. Chem. Chem. Phys. 19(36), 25002–25015 (2017). https://doi.org/10.1039/C7CP03990E

    Article  CAS  PubMed  Google Scholar 

  11. P. Kumar, S. Gadiyaram, D.A. Jose, Chem. Select 5(34), 10648–10655 (2020). https://doi.org/10.1002/slct.202002530

    Article  CAS  Google Scholar 

  12. Y. Ooyama, M. Hato, T. Enoki, S. Aoyama, K. Furue, N. Tsunoji, J. Ohshita, New J. Chem. 40(9), 7278–7281 (2016). https://doi.org/10.1039/C6NJ01467D

    Article  CAS  Google Scholar 

  13. T.I. Kimand, Y. Kim, Anal. Chem. 89(6), 3768–3772 (2017). https://doi.org/10.1021/acs.analchem.7b00270

    Article  CAS  Google Scholar 

  14. K. Kłucińska, P. Rzepiński, M. Mazur, M.K. Cyrański, K. Maksymiuk, A. Michalska, Food Anal. Methods 11(2), 486–494 (2018). https://doi.org/10.1007/s12161-017-1019-7

    Article  Google Scholar 

  15. X.-Y. Wang, C.-G. Niu, L.-Y. Hu, D.-W. Huang, S.-Q. Wu, L. Zhang, X.-J. Wen, G.-M. Zeng, Sens. Actuators B 243, 1046–1056 (2017). https://doi.org/10.1016/j.snb.2016.12.084

    Article  CAS  Google Scholar 

  16. K.-P. Wang, Y. Lei, J.-P. Chen, Z.-H. Ge, W. Liu, Q. Zhang, S. Chen, Z.-Q. Hu, Dyes Pigm. 151, 233–237 (2018). https://doi.org/10.1016/j.dyepig.2018.01.004

    Article  CAS  Google Scholar 

  17. Y. Zhang, C. Liang, S. Jiang, New J. Chem. 41(16), 8644–8649 (2017). https://doi.org/10.1039/C7NJ01361B

    Article  CAS  Google Scholar 

  18. W.E. Passos, I.P. Oliveira, F.S. Michels, M.A. Trindade, E.A. Falcão, B.S. Marangoni, S.L. Oliveira, A.R. Caires, Renew. Energy 165, 42–51 (2021). https://doi.org/10.1016/j.renene.2020.11.041

    Article  CAS  Google Scholar 

  19. D. Citterio, K. Minamihashi, Y. Kuniyoshi, H. Hisamoto, S.I. Sasaki, K. Suzuki, Anal. Chem. 73(21), 5339–5345 (2001). https://doi.org/10.1021/ac010535q

    Article  CAS  PubMed  Google Scholar 

  20. D. Lu, Y. Tang, Y. Zheng, J. Fluoresc. 28(6), 1269–1273 (2018). https://doi.org/10.1007/s10895-018-2300-x

    Article  CAS  PubMed  Google Scholar 

  21. B. Li, W. Wang, Z. Hong, E.-S.M. El-Sayed, D. Yuan, Chem. Comm. 55(48), 6926–6929 (2019). https://doi.org/10.1039/C9CC02324K

    Article  CAS  PubMed  Google Scholar 

  22. J.-X. Wu, B. Yan, Dalton Trans. 46(21), 7098–7105 (2017). https://doi.org/10.1039/C7DT01352C

    Article  CAS  PubMed  Google Scholar 

  23. Y. Dog, J. Cai, Q. Fang, X. You, Y. Chi, Anal. Chem. 88(3), 1748–1752 (2016). https://doi.org/10.1021/acs.analchem.5b03974

    Article  CAS  Google Scholar 

  24. J. Li, P. Du, J. Chen, S. Huo, Z. Han, Y. Deng, Y. Chen, X. Lu, Anal. Chem. 92, 8974–8982 (2020). https://doi.org/10.1021/acs.analchem.0c00966

    Article  CAS  PubMed  Google Scholar 

  25. P. Majee, P. Daga, D.K. Singha, D. Saha, P. Mahata, S.K. Mondal, J. Photochem. Photobiol. A 402, 112830 (2020). https://doi.org/10.1016/j.jphotochem.2020.112830

    Article  CAS  Google Scholar 

  26. Z. Pan, Y. Wen, T. Wang, K. Wang, Y. Teng, K. Shao, J. Rare Earths 38(4), 362–368 (2020). https://doi.org/10.1016/j.jre.2019.04.022

    Article  CAS  Google Scholar 

  27. L. Zhang, X. Li, W. Wang, X. Zhao, X. Yan, C. Wang, H. Bao, Y. Lu, X. Kong, F. Liu, Nano Res. 13(10), 2803–2811 (2020). https://doi.org/10.1007/s12274-020-2932-4

    Article  CAS  Google Scholar 

  28. W. Wang, M. Zhao, L. Wang, H. Chen, Microchim. Acta 186(9), 630 (2019). https://doi.org/10.1007/s00604-019-3744-7

    Article  CAS  Google Scholar 

  29. J. Wei, H. Li, Y. Yuan, C. Sun, D. Hao, G. Zheng, R. Wang, RSC Adv. 8(65), 37028–37034 (2018). https://doi.org/10.1039/C8RA06732E

    Article  CAS  Google Scholar 

  30. J. Wei, Y. Yuan, H. Li, D. Hao, C. Sun, G. Zheng, R. Wang, New J. Chem. 42(23), 18787–18793 (2018). https://doi.org/10.1039/C8NJ04365E

    Article  CAS  Google Scholar 

  31. H.J. Lee, J. Jana, Y.-L.T. Ngo, L.L. Wang, J.S. Chung, S.H. Hur, Mater. Res. Bull. 119, 110564 (2019). https://doi.org/10.1016/j.materresbull.2019.110564

    Article  CAS  Google Scholar 

  32. C. Ye, Y. Qin, P. Huang, A. Chen, F.-Y. Wu, Anal. Chim. Acta 1034, 144–152 (2018). https://doi.org/10.1016/j.aca.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  33. Z. Li, X. Chen, L. Yu, H. Li, L. Chen, Q. Kang, D. Shen, Microchim. Acta 187(10), 1–12 (2020). https://doi.org/10.1007/s00604-020-04551-w

    Article  CAS  Google Scholar 

  34. J. Wang, J. Wang, W. Xiao, Z. Geng, D. Tan, L. Wei, J. Li, L. Xue, X. Wang, J. Zhu, Anal. Methods (2020). https://doi.org/10.1039/D0AY00485E

    Article  PubMed  Google Scholar 

  35. Y. Huang, W. Liu, H. Feng, Y. Ye, C. Tang, H. Ao, M. Zhao, G. Chen, J. Chen, Z. Qian, Anal. Methods 88(14), 7429–7434 (2016). https://doi.org/10.1021/acs.analchem.6b02149

    Article  CAS  Google Scholar 

  36. D. Chao, W. Lyu, Y. Liu, L. Zhou, Q. Zhang, R. Deng, H. Zhang, J. Mater. Chem. C 6(28), 7527–7532 (2018). https://doi.org/10.1039/C8TC02184H

    Article  CAS  Google Scholar 

  37. M. Zhao, H. Feng, X. Zhang, H. Ao, Z. Qian, Analyst 142(24), 4613–4617 (2017). https://doi.org/10.1039/C7AN01542A

    Article  CAS  PubMed  Google Scholar 

  38. A. Senthamizhan, D. Fragouli, B. Balusamy, B. Patil, M. Palei, S. Sabella, T. Uyar, Nanoscale Adv. 1(11), 4258–4267 (2019). https://doi.org/10.1039/C9NA00493A

    Article  CAS  Google Scholar 

  39. F. Gao, F. Luo, X. Chen, W. Yao, J. Yin, Z. Yao, L. Wang, Microchim. Acta 166(1–2), 163–167 (2009). https://doi.org/10.1007/s00604-009-0180-0

    Article  CAS  Google Scholar 

  40. H.-Q. Yin, J.-C. Yang, X.-B. Yin, Anal. Chem. 89(24), 13434–13440 (2017). https://doi.org/10.1021/acs.analchem.7b03723

    Article  CAS  PubMed  Google Scholar 

  41. P. Kumar, R. Kaushik, A. Ghosh, D.A. Jose, Anal. Chem. 88(23), 11314–11318 (2016)

    Article  CAS  Google Scholar 

  42. J. Hu, X. Yu, X. Zhang, C. Jing, T. Liu, X. Hu, S. Lu, K. Uvdal, H.-W. Gao, Z. Hu, Spectrochim. Acta A 241, 118657 (2020). https://doi.org/10.1021/acs.analchem.6b03949

    Article  CAS  Google Scholar 

  43. N.I. Georgiev, P.V. Krasteva, V.B. Bojinov, J. Lumin. 212, 271–278 (2019). https://doi.org/10.1016/j.jlumin.2019.04.053

    Article  CAS  Google Scholar 

  44. H. Sun, X.-X. Tang, B.-X. Miao, Y. Yang, Z. Ni, Sensors Actuators B. 267, 448–456 (2018). https://doi.org/10.1016/j.snb.2018.04.022

    Article  CAS  Google Scholar 

  45. P. Shen, M. Li, C. Liu, W. Yang, S. Liu, C. Yang, J. Fluoresc. 26(1), 363–369 (2016). https://doi.org/10.1007/s10895-015-1722-y

    Article  CAS  PubMed  Google Scholar 

  46. M. Cigáň, M. Horváth, J. Filo, K. Jakusová, J. Donovalová, V. Garaj, A. Gáplovský, Molecules 22(8), 1340 (2017). https://doi.org/10.3390/molecules22081340

    Article  CAS  PubMed Central  Google Scholar 

  47. L. Chen, J.-W. Ye, H.-P. Wang, M. Pan, S.-Y. Yin, Z.-W. Wei, L.-Y. Zhang, K. Wu, Y.-N. Fan, C.-Y. Su, Nature Commun. 8(1), 1–10 (2017)

    Article  Google Scholar 

  48. H.T. Bui, J.M. Lim, D.K. Mai, H. Kim, H.-J. Kim, H.J. Kim, S. Cho, Dyes Pig. 176, 108194 (2020). https://doi.org/10.1016/j.dyepig.2020.108194

    Article  CAS  Google Scholar 

  49. K. Zhang, T.-T. Chen, Y.-J. Shen, L.-F. Zhang, S. Ma, Y. Huang, Sensors Actuators B 311, 127887 (2020). https://doi.org/10.1016/j.snb.2020.127887

    Article  CAS  Google Scholar 

  50. T. Chen, Z.-Q. Chen, W.-L. Gong, C. Li, M.-Q. Zhu, Mater. Chem. Front. 1(9), 1841–1846 (2017). https://doi.org/10.1039/C7QM00172J

    Article  CAS  Google Scholar 

  51. T. Enoki, Y. Ooyama, Dalton Trans. 48(6), 2086–2092 (2019). https://doi.org/10.1039/C8DT04527E

    Article  CAS  PubMed  Google Scholar 

  52. W.Y. Kim, H. Shi, H.S. Jung, D. Cho, P. Verwilst, J.Y. Lee, J.S. Kim, Chem. Commun. 52(56), 8675–8678 (2016). https://doi.org/10.1039/C6CC04285F

    Article  CAS  Google Scholar 

  53. Y. Chen, C. Zhang, J. Xie, H. Li, W. Dai, Q. Deng, S. Wang, Anal. Chim. Acta 1109, 114–121 (2020). https://doi.org/10.1016/j.aca.2020.03.003

    Article  CAS  PubMed  Google Scholar 

  54. Z. Wang, G. Wang, X. Chang, K. Liu, Y. Qi, C. Shang, R. Huang, T. Liu, Y. Fang, Adv. Funct. Mater 29(44), 1905295 (2019). https://doi.org/10.1002/adfm.201905295

    Article  CAS  Google Scholar 

  55. X. Zhao, S. Yang, J. Lumin. 220, 116993 (2020). https://doi.org/10.1016/j.jlumin.2019.116993

    Article  CAS  Google Scholar 

  56. J. Nootem, C. Sattayanon, S. Namuangruk, P. Rashatasakhon, W. Wattanathana, G. Tumcharern, K. Chansaenpak, Dyes Pigm. 181, 108554 (2020). https://doi.org/10.1016/j.dyepig.2020.108554

    Article  CAS  Google Scholar 

  57. M. Tanioka, S. Kamino, A. Muranaka, Y. Shirasaki, Y. Ooyama, M. Ueda, M. Uchiyama, S. Enomoto, D. Sawada, Phys. Chem. Chem. Phys. 19(2), 1209–1216 (2017). https://doi.org/10.1039/C6CP06808A

    Article  CAS  PubMed  Google Scholar 

  58. X. Du, R. Fan, L. Qiang, Y. Song, K. Xing, W. Chen, P. Wang, Y. Yang, Inorg. Chem. 56(6), 3429–3439 (2017). https://doi.org/10.1021/acs.inorgchem.6b02963

    Article  CAS  PubMed  Google Scholar 

  59. C. Yang, X. Wang, Z. Xu, M. Wang, Sensors Actuators B 245, 845–852 (2017). https://doi.org/10.1016/j.snb.2017.01.147

    Article  CAS  Google Scholar 

  60. S. Kumar, S. Maji, K. Sundararajan, K. Sankaran, Luminescence 33(3), 611–615 (2018). https://doi.org/10.1002/bio.3453

    Article  CAS  PubMed  Google Scholar 

  61. P. Yuvaraj, J. Ajantha, S. Easwaramoorthi, J.R. Rao, New J. Chem. 44(16), 6566–6574 (2020). https://doi.org/10.1039/D0NJ00636J

    Article  CAS  Google Scholar 

  62. K. Zargoosh, M. Barmaki, A. Abdolmaleki, K.F. Tadavani, J. Iran. Chem. Soc. 17(4), 923–933 (2020). https://doi.org/10.1007/s13738-019-01823-y

    Article  CAS  Google Scholar 

  63. K. Zargoosh, R. Reisi Oshtorjani, K. Karami, S. Hashemi, Luminescence 35(1), 69–78 (2020). https://doi.org/10.1002/bio.3697

    Article  CAS  PubMed  Google Scholar 

  64. K. Tiwari, M. Mishra, S. Singh, V.P. Singh, ChemistrySelect 5(30), 9547–9553 (2020). https://doi.org/10.1002/slct.202002005

    Article  CAS  Google Scholar 

  65. P. Kumar, R. Sakla, A. Ghosh, D.A. Jose, Appl. Mater. Interfaces 9(30), 25600–25605 (2017). https://doi.org/10.1021/acsami.7b05335

    Article  CAS  Google Scholar 

  66. P. Kumar, A. Ghosh, D.A. Jose, Analyst 144(2), 594–601 (2019). https://doi.org/10.1039/C8AN01042K

    Article  CAS  PubMed  Google Scholar 

  67. Y. Wu, J. Ji, Y. Zhou, Z. Chen, S. Liu, J. Zhao, Anal. Chim. Acta (2020). https://doi.org/10.1016/j.aca.2020.02.043

    Article  PubMed  Google Scholar 

  68. M. Cigáň, J. Gašpar, K. Gáplovská, J. Holekšiová, K. Jakusová, J. Donovalová, V. Garaj, H. Stankovičová, New J. Chem. 40(10), 8946–8953 (2016). https://doi.org/10.1039/C6NJ01639A

    Article  Google Scholar 

  69. C. Pati, R. Raza, K. Ghosh, Spectrochim. Acta A 229, 117910 (2020). https://doi.org/10.1016/j.saa.2019.117910

    Article  CAS  Google Scholar 

  70. F. Wu, L. Wang, H. Tang, D. Cao, Anal. Chem. 91(8), 5261–5269 (2019). https://doi.org/10.1021/acs.analchem.9b00032

    Article  CAS  PubMed  Google Scholar 

  71. K. Santhiya, S.K. Sen, R. Natarajan, B. Dyes Pigm. 185, 108891 (2021). https://doi.org/10.1016/j.dyepig.2020.108891

    Article  CAS  Google Scholar 

  72. J. Tan, X. Wang, Q. Zhang, H. Zhou, J. Yang, J. Wu, Y. Tian, X. Zhang, Sensors Actuators B 260, 727–735 (2018). https://doi.org/10.1016/j.snb.2017.12.186

    Article  CAS  Google Scholar 

  73. P. Kumar, D.A. Jose, Anal. Chim. Acta 1136, 178–186 (2020). https://doi.org/10.1016/j.aca.2020.09.058

    Article  CAS  PubMed  Google Scholar 

  74. H. Yoo, H.S. Kim, J. Mater. Chem. C 7(24), 7336–7343 (2019). https://doi.org/10.1039/C9TC01767D

    Article  CAS  Google Scholar 

  75. G.H. van Kollenburg, H.-J. van Manen, N. Admiraal, J. Gerretzen, J.J. Jansen, Talanta 12, 2020 (1865). https://doi.org/10.1016/j.talanta.2020.121865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Affairs of Tabriz University of Medical Sciences, under grant number 65523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh Rahimpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouyban, A., Rahimpour, E. Optical sensors for determination of water in the organic solvents: a review. J IRAN CHEM SOC 19, 1–22 (2022). https://doi.org/10.1007/s13738-021-02290-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02290-0

Keywords

Navigation