Skip to main content
Log in

LII–lidar: range-resolved backward picosecond laser-induced incandescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel concept for remote in situ detection of soot emissions by a combination of laser-induced incandescence (LII) and light detection and ranging (lidar) is presented. A lidar setup based on a picosecond Nd:YAG laser and time-resolved signal detection in the backward direction was used for LII measurements in sooty premixed ethylene–air flames. Measurements of LII–lidar signal versus laser fluence and flame equivalence ratio showed good qualitative agreement with data reported in literature. The LII–lidar signal showed a decay consisting of two components, with lifetimes of typically 20 and 70 ns, attributed to soot sublimation and conductive cooling, respectively. Theoretical considerations and analysis of the LII–lidar signal showed that the derivative was proportional to the maximum value, which is an established measure of soot volume fraction. Utilizing this, differentiation of LII–lidar data gave profiles representing soot volume fraction with a range resolution of ~16 cm along the laser beam propagation axis. The accuracy of the evaluated LII-profiles was confirmed by comparison with LII-data measured simultaneously employing conventional right-angle detection. Thus, LII–lidar provides range-resolved single-ended detection, resourceful when optical access is restricted, extending the LII technique and opening up new possibilities for laser-based diagnostics of soot and other carbonaceous particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Bockhorn, Soot Formation in Combustion—Mechanisms and Models (Springer, Berlin, Heidelberg, 1994), p. 606

    Book  Google Scholar 

  2. A. D’Anna, Proc. Combust. Inst. 32, 593 (2009)

    Article  Google Scholar 

  3. G. Shrestha, S.J. Traina, C.W. Swanston, Sustainability 2, 294 (2010)

    Article  Google Scholar 

  4. B. Nowack, T.D. Bucheli, Environ. Pollut. 150(1), 5 (2007)

    Article  Google Scholar 

  5. P.H. McMurry, Atmos. Environ. 34(12–14), 1959 (2000)

    Article  ADS  Google Scholar 

  6. H. Moosmuller, R.K. Chakrabarty, W.P. Arnott, J. Quant. Spectrosc. Radiat. 110(11), 844 (2009)

    Article  ADS  Google Scholar 

  7. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  8. R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics, ed. by K. Kohse-Köinghaus, J.B. Jeffries (Taylor & Francis, London, 2002), pp. 252–286

    Google Scholar 

  9. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  10. H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 90, 109 (2008)

    Article  ADS  Google Scholar 

  11. H. Bladh, P.-E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, P. Desgroux, Appl. Phys. B 83, 423 (2006)

    Article  ADS  Google Scholar 

  12. J.D. Black, Laser-induced Incandescence Measurements of Particles in Aero-Engine Exhausts, EOS/SPIE Meeting, Munich, June 14–18, Paper 3821-38 (1999)

  13. K. Schäfer, J. Heland, D.H. Lister, C.W. Wilson, R.J. Howes, R.S. Falk, E. Lindermeir, M. Birk, G. Wagner, P. Haschberger, M. Bernard, O. Legras, P. Wiesen, R. Kurtenbach, K.J. Brockkmann, V. Kriesche, M. Hilton, G. Bishop, R. Clarke, J. Workman, M. Caola, R. Geatches, R. Burrows, J.D. Black, P. Hervé, J. Vally, Appl. Opt. 39, 441 (2000)

    Article  ADS  Google Scholar 

  14. J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J.D. Black, I. Vallet, Appl. Phys. B 95, 825 (2009)

    Article  ADS  Google Scholar 

  15. T.P. Jenkins, J.L. Bartholomew, P.A. DeBarber, P. Yang, J.M. Seitzman, R.P. Howard, AIAA, Paper 2002-3736 (2002)

  16. C. Weitkamp (ed.), Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, Berlin, 2005)

    Google Scholar 

  17. T. Fujii, T. Fukuchi (eds.), Laser Remote Sensing (Taylor & Francis, London, 2005)

    Google Scholar 

  18. B. Kaldvee, A. Ehn, J. Bood, M. Aldén, Appl. Opt. 48, B65 (2009)

    Article  ADS  Google Scholar 

  19. B. Kaldvee, J. Bood, M. Aldén, Meas. Sci. Technol. 22, 125302 (2011)

    Article  ADS  Google Scholar 

  20. D.J. Bradley, B. Liddy, W.E. Sleat, Opt. Commun. 2, 391 (1971)

    Article  ADS  Google Scholar 

  21. M.Ya. Schelev, M.C. Richardson, A.J. Alcock, Appl. Phys. Lett. 18, 354 (1971)

    Article  ADS  Google Scholar 

  22. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  23. H.A. Michelsen, Appl. Phys. B 83, 443 (2006)

    Article  ADS  Google Scholar 

  24. R. Hadef, K.P. Geigle, W. Meier, M. Aigner, Int. J. Therm. Sci. 49, 1457 (2010)

    Article  Google Scholar 

  25. S. Maffi, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Phys. B 104(2), 357 (2011)

    Article  ADS  Google Scholar 

  26. B. Kaldvee, C. Brackmann, J. Bood, M. Aldén, Opt. Express 20, 20688 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Centre of Combustion Science and Technology (CECOST) and the European Research Council Advanced Grant DALDECS for financial support. Moreover, Henrik Bladh, Per-Erik Bengtsson, and Jonathan Jonsson should be acknowledged for their input when planning the experiments and their valuable and helpful information regarding LII reference work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy Kaldvee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaldvee, B., Brackmann, C., Aldén, M. et al. LII–lidar: range-resolved backward picosecond laser-induced incandescence. Appl. Phys. B 115, 111–121 (2014). https://doi.org/10.1007/s00340-013-5581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5581-4

Keywords

Navigation