Skip to main content
Log in

Focal length measurement of a varifocal liquid lens with capacitance detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper reports on a detailed deformation model of varifocal liquid lenses fabricated by Parylene-on-liquid-deposition (POLD), which can be applied to measure and adjust the focal length of such lenses without using extra sensors or sensing mechanisms. The lens was fabricated by encapsulating a liquid between a transparent electrode and a polymer film that was covered with a metal electrode. When voltage is applied to the two electrodes, the lens deforms due to the electrostatic force, and its focal length and the capacitance between the two electrodes change simultaneously. This characteristic enables the focal length of the lens to be adjusted and detected by measuring the capacitance change. The focal length of the fabricated varifocal liquid lens changed from 153.6 to 82.6 mm by applying 150-V. The focal length change of the liquid lens was calculated from the change in its capacitance. Finally, to confirm the efficiency of this varifocal liquid lens, we fabricated a confocal distance sensor using the lens for laser scanning and demonstrated that this system can be used to measure distances of 94–140 mm with an average error of 0.83 mm and a standard deviation of 0.77 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Kim, J.S. Lee, A.W. Morles, S.J. Ko, A video camera system with enhanced zoom tracking and auto white balance. IEEE Trans. Consum. Electron. 48(3), 428–434 (2002)

    Article  Google Scholar 

  2. C.S. Liu, P.D. Lin, P.H. Lin, S.S. Ke, Y.H. Chang, J.B. Horg, Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications. IEEE Trans. Magn. 45(1), 155–159 (2009)

    Article  ADS  Google Scholar 

  3. J.A. Conchello, J.W. Lichtman, Optical sectioning microscopy. Nat. Methods 2(12), 920–931 (2005)

    Article  Google Scholar 

  4. M. Figl, C. Ede, J. Hummel, F. Wanschitz, R. Ewers, H. Bergmann, W. Birkfellner, A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus. IEEE Trans. Med. Imag. 24(11), 1492–1499 (2005)

    Article  Google Scholar 

  5. Y. Shao, D.L. Dickensheets, P. Himmer, 3-D MOEMS mirror for laser beam pointing and focus control. IEEE J. Sel. Top. Quant. Electron. 10(3), 528–535 (2004)

    Article  Google Scholar 

  6. R. Hokari, K. Hane, Micro-mirror laser scanner combined with a varifocal mirror. Microsyst. Technol. 18, 475–480 (2012)

    Article  Google Scholar 

  7. S.W. Lee, S.S. Lee, Focal tunable liquid lens integrated with an electromagnetic actuator. Appl. Phys. Lett. 90, 121129 (2007)

    Article  ADS  Google Scholar 

  8. N.T. Nguyen, Micro-optofluidic lenses: a review. Biomicrofluidics 4, 031501 (2010)

    Article  Google Scholar 

  9. N. Binh-Khiem, K. Matsumoto, I. Shimoyama, Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses. Appl. Phys. Lett. 93(12), 124101 (2008)

    Article  ADS  Google Scholar 

  10. A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D.S. Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, E.V. Blanc, Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers. Sensor Actuator Phys. 172, 280–286 (2011)

    Article  Google Scholar 

  11. S. Kuiper, B.H.W. Hendriks, Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1779954 (2004)

    Article  Google Scholar 

  12. Y.J. Chang, K. Mohseni, V.M. Bright, Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD. Sensor Actuator Phys. 136, 546–553 (2007)

    Article  Google Scholar 

  13. X. Hu, S. Zhang, C. Qu, Q. Zhang, L. Lu, X. Ma, X. Zhang, Y. Deng, Ionic liquid based variable focus lenses. Soft Matter 7, 5941–5943 (2011)

    Article  ADS  Google Scholar 

  14. C. Li, H. Jiang, Electrowetting-driven variable-focus microlens on flexible surfaces. Appl. Phys. Lett. 100, 231105 (2012)

    Article  ADS  Google Scholar 

  15. L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)

    Article  ADS  Google Scholar 

  16. X. Zeng, C.T. Smith, J.C. Gould, C.P. Heis, H. Jiang, Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light. IEEE ASME J. Microelectromech. Syst. 20(3), 583–593 (2011)

    Article  Google Scholar 

  17. G.A. Topasna, Capacitance of spherical dielectric layers. Appl. Phys. Lett. 100, 024501 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Science and Technology Agency (JST). The photomasks were made by using the University of Tokyo VLSI Design and Education Center’s (VDEC) 8-inch EB write F5112 + VD01 donated by ADVANTEST Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Noda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, K., Binh-Khiem, N., Takei, Y. et al. Focal length measurement of a varifocal liquid lens with capacitance detection. Appl. Phys. B 115, 69–76 (2014). https://doi.org/10.1007/s00340-013-5574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5574-3

Keywords

Navigation