Skip to main content
Log in

Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The ejection of molecules from a pressed solid target of lysozyme induced by laser ablation in the UV-regime at a wavelength of 355 nm was investigated. The ablation studies were carried out in vacuum at a laser fluence of 2 J/cm2 for which a significant fraction of proteins remains intact. This was verified by matrix-assisted laser desorption ionization (MALDI) spectrometry of thin films deposited on silicon substrates. The deposition rate of lysozyme was found to decrease with the number of shots and was correlated with increasing thermal damage of the lysozyme. This was monitored by measurements of the optical reflectivity of dry lysozyme. The angular distribution of the mass deposition can be fitted well by Anisimov’s hydrodynamic model. The total deposited yield over the entire hemisphere from direct laser ablation of lysozyme was estimated from this model and found to be three orders of magnitude less than the ablated mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.B. Chrisey, A. Pique, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103, 553 (2003)

    Article  Google Scholar 

  2. A. Caricato, A. Luches, Appl. Phys. A Mater. Sci. Process. 105, 565 (2011)

    Article  ADS  Google Scholar 

  3. A. Piqué, Appl. Phys. A Mater. Sci. Process. 105, 519 (2011)

    ADS  Google Scholar 

  4. A. Matei, J. Schou, C. Constantinescu, P. Kingshott, M. Dinescu, Appl. Phys. A Mater. Sci. Process. 105, 629 (2011)

    Article  ADS  Google Scholar 

  5. E. Gyorgy, A.P. del Pino, G. Sauthier, A. Figueras, J. Appl. Phys. 106, 114702 (2009)

    Article  ADS  Google Scholar 

  6. C. Popescu, J. Roqueta, A. Perez del Pino, M. Moussaoui, M.V. Nogues, E. Gyoergy, J. Mater. Res. 26, 815 (2011)

    Article  ADS  Google Scholar 

  7. B.R. Ringeisen, J. Callahan, P.K. Wu, A. Piqué, B. Spargo, R.A. McGill, M. Bucaro, H. Kim, D.M. Bubb, D.B. Chrisey, Langmuir 17(11), 3472 (2001)

    Article  Google Scholar 

  8. T. Smausz, G. Megyeri, R. Kékesi, C. Vass, E. György, F. Sima, I.N. Mihailescu, B. Hopp, Thin Solid Films 517, 4299 (2009)

    Article  ADS  Google Scholar 

  9. E. Gyorgy, A.P. del Pino, G. Sauthier, A. Figueras, J. Appl. Phys. 106, 114702 (2009)

    Article  ADS  Google Scholar 

  10. G. Kim, M. Gurau, J. Kim, P.S. Cremer, Langmuir 18, 2807 (2002)

    Article  Google Scholar 

  11. A. Purice, J. Schou, P. Kingshott, M. Dinescu, Chem. Phys. Lett. 435, 350 (2007)

    Article  ADS  Google Scholar 

  12. A. Purice, J. Schou, P. Kingshott, N. Pryds, M. Dinescu, Appl. Surf. Sci. 253, 6451 (2007)

    Article  ADS  Google Scholar 

  13. A. Purice, J. Schou, N. Pryds, A. Filipescu, M. Dinescu, Appl. Surf. Sci. 254, 1244 (2007)

    Article  ADS  Google Scholar 

  14. S. Anisimov, D. Bauerle, B. Lukyanchuk, Phys. Rev. B. 48, 12076 (1993)

    Article  ADS  Google Scholar 

  15. W. Svendsen, J. Schou, T.N. Hansen, O. Ellegaard, Appl. Phys. A Mater. Sci. Process. 66, 493 (1998)

    Article  ADS  Google Scholar 

  16. S. Daviðsdóttir, J. Soyama, K. Dirscherl, S. Canulescu, J. Schou, R. Ambat, Surf. Coat. Tech. 216, 35 (2013)

    Google Scholar 

  17. H. Durchschlag, T. Hefferle, P. Zipper, Radiat. Phys. Chem. 67, 479 (2003)

    Article  ADS  Google Scholar 

  18. T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, J. Appl. Phys. 108, 043309 (2010)

    Article  ADS  Google Scholar 

  19. B. Toftmann, J. Schou, Appl. Phys. A Mater. Sci. Process. 112, 197 (2013)

    Google Scholar 

  20. B. Thestrup, B. Toftmann, J. Schou, B. Doggett, J. Lunney, Appl. Surf. Sci. 197, 175 (2002)

    Article  ADS  Google Scholar 

  21. T.N. Hansen, J. Schou, J. Lunney, Appl. Phys. A Mater. Sci. Process. 69(7), S601 (1999)

    Article  ADS  Google Scholar 

  22. B. Toftmann, J. Schou, J. Lunney, Phys. Rev. B. 67, 104101 (2003)

    Article  ADS  Google Scholar 

  23. A. Matei, M. Tabetah, C. Constantinescu, J. Schou, L.V. Zhigilei, M. Dinescu, to be published (2013)

  24. L.V. Zhigilei, A. Volkov, E. Leveugle, M. Tabetah, Appl. Phys. A Mater. Sci. Process. 105, 529 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the competent technical assistance from Arne Nordskov and Lotte Nielsen. We would also like to acknowledge Dennis D. Corell and Carsten Dam-Hansen for fruitful collaboration and support on reflectance measurements using the integrating sphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinescu, C., Matei, A., Schou, J. et al. Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution. Appl. Phys. B 113, 367–371 (2013). https://doi.org/10.1007/s00340-013-5485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5485-3

Keywords

Navigation