Skip to main content
Log in

Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we report the design, simulation, and measurements of a broadband metamaterial absorber (MA) based on a periodic array of multi-layer cross-structure resonators. A perfect narrowband MA consists of cross-structure resonator, dielectric substrate, and continuous metal films, and the absorption frequency can be tunable by changing the geometrical parameters based on L-C resonance circuit theory. Furthermore, the absorption band of our design is effectively extended by simply stacking several such structural layers with different geometrical dimensions. Finally, the 4-layer cross-structure MA is only 2 mm, which can achieve a full width at half maximum (FWHM) bandwidth of 2 GHz by numerical simulations, and 90 % bandwidth of 1.9 GHz by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  4. F. Bilotti, A. Alu, N. Engheta, L. Vegni, in Proceedings of the 2005 Nanoscience and Nanotechnology Symposium—NN 2005 (Frascati, Italy, 2005)

  5. H. Mosallaei, K. Sarabandi, in IEEE Antennas and Propagation Society International Symposium, vol. 1B, p. 615 (2005)

  6. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  7. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Phys. Rev. B 79, 125104 (2009)

    Article  ADS  Google Scholar 

  8. C. Hu, Z. Zhao, X. Chen, X. Luo, Opt. Express 17, 11039 (2009)

    Article  ADS  Google Scholar 

  9. Y.Z. Cheng, H.L. Yang, J. Appl. Phys. 108, 034906 (2010)

    Article  ADS  Google Scholar 

  10. Q.Y. Wen, H.W. Zhang, Y.S. Xie, Q.H. Yang, Y.L. Liu, Appl. Phys. Lett. 95, 241111 (2009)

    Article  ADS  Google Scholar 

  11. H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D 43, 225102 (2010)

    Article  ADS  Google Scholar 

  12. X. Liu, T. Starr, A.F. Starr, W.J. Padilla1, Phys. Rev. Lett., 104, 207403 (2010)

    Google Scholar 

  13. J. Hao, L. Zhou, M. Qiu, Phys. Rev. B 83, 165107 (2011)

    Article  ADS  Google Scholar 

  14. J. Lee, S. Lim, Electron. Lett. 47, 478 (2011)

    Google Scholar 

  15. M.H. Li, H.L. Yang, X.W. Hou, Y. Tian, D.Y. Hou, Pro. In. Electro. Res. 108, 37 (2010)

    Article  Google Scholar 

  16. Y.Z. Cheng, Y. Nie, R.Z. Gong, H.L. Yang, Eur. Phys. J. Appl. Phys. 56, 31301 (2011)

    Article  ADS  Google Scholar 

  17. H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, Opt. Express 18, 22187 (2010)

    Article  ADS  Google Scholar 

  18. H. Luo, Y.Z. Cheng, R.Z. Gong, Eur. Phys. J. B 81, 387 (2011)

    Article  ADS  Google Scholar 

  19. W. Ren, G. Zhang, Y. Wu, H. Ding, Q. Shen, K. Zhang, J. Li, N. Pan, X. Wang, Opt. Express 19, 26536 (2011)

    Article  ADS  Google Scholar 

  20. Y.Q. Ye, Y. Jin, S. He, Opt. Soc. Am. B 27, 498 (2010)

    Article  Google Scholar 

  21. J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Opt. Lett. 36, 3476 (2011)

    Article  ADS  Google Scholar 

  22. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C.M. Soukoulis, Phys. Rev. B 73, 041101 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongzhou Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Nie, Y. & Gong, R. Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators. Appl. Phys. B 111, 483–488 (2013). https://doi.org/10.1007/s00340-013-5361-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5361-1

Keywords

Navigation