Skip to main content

Advertisement

Log in

Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we propose and experimentally validate a low-frequency metamaterial absorber (MMA) based on lumped elements with broadband stronger absorptivity in the microwave regime. Compared with the electric resonator structure MMA, the composite MMA (CMMA) loaded with lumped elements has stronger absorptivity and nearly impedance-matched to the free space in a broadband frequency range. The simulated voltage in lumped elements and the absorbance under different substrate loss conditions indicate that incident electromagnetic wave energy is mainly transformed to electric energy in the absorption band with high efficiency and subsequently consumed by lumped resistors. Simulated surface current and power loss density distributions further clarify the mechanism underlying observed absorption. The CMMA also shows a polarization-insensitive and wide-angle strong absorption. Finally, we fabricate and measure the MMA and CMMA samples. The CMMA yields below −10 dB reflectance from 2.85 to 5.31 GHz in the experiment, and the relative bandwidth is about 60.3 %. This low-frequency microwave absorber has potential applications in many martial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)

    Article  ADS  Google Scholar 

  2. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  3. C.M. Watts, X.L. Liu, W.J. Padilla, Adv. Mater. 24, 98 (2012)

    Google Scholar 

  4. Y.Z. Cheng, H.L. Yang, Z.Z. Cheng, N. Wu, Appl. Phys. A 102, 99 (2011)

    Article  ADS  Google Scholar 

  5. L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Appl. Phys. A 105, 49 (2011)

    Article  ADS  Google Scholar 

  6. Y.Z. Cheng, Y. Wang, Y. Nie, R. Zhou Gong, X. Xiong, X. Wang, J. Appl. Phys. 111, 044902 (2012)

    Article  ADS  Google Scholar 

  7. Y.Q. Pang, H.F. Cheng, Y.J. Zhou, J. Wang, J. Appl. Phys. 113, 114902 (2013)

    Article  ADS  Google Scholar 

  8. Y.Z. Cheng, Y. Nie, R.Z. Gong, Appl. Phys. B 111, 483 (2013)

    Article  ADS  Google Scholar 

  9. S. Bhattacharyya, K.V. Srivastava, J. Appl. Phys. 115, 064508 (2014)

    Article  ADS  Google Scholar 

  10. F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Appl. Phys. Lett. 100, 103506 (2012)

    Article  ADS  Google Scholar 

  11. H.B. Zhang, L.W. Deng, P.H. Zhou, L. Zhang, D.W. Cheng, H.Y. Cheng, D.F. Liang, L.J. Deng, J. Appl. Phys. 113, 013903 (2013)

    Article  ADS  Google Scholar 

  12. Y.Z. Cheng, Y. Nie, X. Wang, R.Z. Gong, J. Appl. Phys. 115, 064902 (2014)

    Article  ADS  Google Scholar 

  13. N. Engheta, IEEE Antennas Propag. Soc. Int. Symp. 2, 392 (2002)

    Article  Google Scholar 

  14. C. Mias, J.H. Yap, IEEE Trans. Antennas Propag. 55, 1955 (2007)

    Article  ADS  Google Scholar 

  15. F. Costa, S. Genovesi, A.M. Onorchio, IEEE Antennas Wirel. Propag. Lett. 8, 1341–1344 (2009)

    Article  Google Scholar 

  16. F. Costa, A. Monorchio, G. Manara, IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010)

    Article  ADS  Google Scholar 

  17. L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Opt. Express 20(4), 4675–4680 (2012)

    Article  ADS  Google Scholar 

  18. C. Gu, S.B. Qu, Z.B. Pei, H. Zhou, Z. Xu, P. Bai, W.D. Peng, B.Q. Lin, Chin. Phys. Lett. 27, 117802 (2010)

    Article  ADS  Google Scholar 

  19. X. Chen, Y. Li, Y. Fu, N. Yuan, Opt. Express 20(27), 28347–28351 (2012)

    Article  ADS  Google Scholar 

  20. Y. Pinto, J. Sarrazin, A.C. Lepage, X. Begaud, N. Capet, Appl. Phys. A 115, 541 (2014)

    Article  ADS  Google Scholar 

  21. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Cheng, Y. Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment. Appl. Phys. A 117, 1915–1921 (2014). https://doi.org/10.1007/s00339-014-8637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8637-3

Keywords

Navigation