Skip to main content
Log in

Resolution enhancement in noise spectrum by using velocity selective optical pumping in cesium vapor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate experimentally that the resolution of amplitude noise spectrum in Cs atomic vapor can be enhanced by narrowing the absorption using velocity selective optical pumping technique. It is found that the steep atomic dispersion accompanied by high absorption leads to more conversion of laser phase noise to amplitude noise, when the field propagates throughout the atoms, and meanwhile the spectral resolution is improved. The effect of optical pumping intensity on the spectrum resolution is experimentally discussed, and a theoretical explanation for this phenomenon is given, which shows that the phase-to-amplitude noise conversion is directly proportional to the dispersion of medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Knappe, V. Shah, P.D.D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, J. Moreland, A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460 (2004)

    Article  ADS  Google Scholar 

  2. M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A.S. Villar, W. Hänsel, C.F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G.D. Rovera, Ph Laurent, Absolute frequency measurement of the 40Ca+ 4s2S1/2-3d2D5/2 clock transition. Phys. Rev. Lett. 102, 023002 (2009)

    Article  ADS  Google Scholar 

  3. M. Tetu, N. Cyr, B. Villeneuve, S. Theriault, M. Breton, P. Tremblay, Toward the realization of a wavelength standard at 780 nm based on a laser diode frequency locked to rubidium vapor. IEEE Trans. Instrum. Meas. 40, 191 (1991)

    Article  Google Scholar 

  4. C. Affolderbach, M. Stähler, S. Knappe, R. Wynands, An all-optical, high-sensitivity magnetic gradiometer. Appl. Phys. B Lasers Optics. 75, 605 (2002)

    Article  ADS  Google Scholar 

  5. E. de Carlos López, J.M. López Romero, Laser frequency stabilization using fm optical pumping spectroscopy. Rev. Mex. Fís. 54, 222 (2008)

    Google Scholar 

  6. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  7. M. Fleischhauer, M.D. Lukin, Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  8. T.W. Hänsch, I.S. Shahin, A.L. Schawlow, “Optical resolution of the lamb shift in atomic hydrogen by laser saturation spectroscopy”, nature (London). Phys. Sci. 235, 63 (1972)

    ADS  Google Scholar 

  9. C. Wieman, T.W. Hänsch, Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170 (1976)

    Article  ADS  Google Scholar 

  10. M. Pinard, C.G. Aminoff, F. Laloë, Velocity-selective optical pumping and Doppler-free spectroscopy. Phys. Rev. A. 19, 2366 (1979)

    Article  ADS  Google Scholar 

  11. T. Yabusaki, T. Mitsui, U. Tanaka, New type of high-resolution spectroscopy with a diode laser. Phys. Rev. Lett. 67, 2453 (1991)

    Article  ADS  Google Scholar 

  12. R. Walser, P. Zoller, Laser-noise-induced polarization fluctuations as a spectroscopic tool. Phys. Rev. A. 49, 5067 (1994)

    Article  ADS  Google Scholar 

  13. D.H. McIntyre, C.E. Fairchild, J. Cooper, R. Walser, Diode-laser noise spectroscopy of rubidium. Opt. Lett. 18, 1816 (1993)

    Article  ADS  Google Scholar 

  14. A.P. Willis, A.I. Ferguson, D.M. Kane, Longitudinal mode noise conversion by atomic vapour. Opt. Commun. 122, 31 (1995)

    Article  ADS  Google Scholar 

  15. M. Rosenbluh, A. Rosenhouse-Dantsker, A.D. Wilson-Gordon, M.D. Levenson, R. Walser, Spectroscopy with diode-laser noise. Opt. Commun. 146, 158 (1998)

    Article  ADS  Google Scholar 

  16. R. Walser, J. Cooper, P. Zoller, Saturated absorption spectroscopy using diode-laser phase noise. Phys. Rev. A. 50, 4303 (1994)

    Article  ADS  Google Scholar 

  17. K.V. Vasavada, G. Vemuri, G.S. Agarwal, Diode-laser-noise-based spectroscopy of allowed and crossover resonances. Phys. Rev. A. 52, 4159 (1995)

    Article  ADS  Google Scholar 

  18. J.C. Camparo, J.G. Coffer, Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: the role of laser linewidth. Phys. Rev. A. 59, 728 (1999)

    Article  ADS  Google Scholar 

  19. T. Mitsui, Spontaneous noise spectroscopy of an atomic magnetic resonance. Phys. Rev. Lett. 84, 5292 (2000)

    Article  ADS  Google Scholar 

  20. J.J. Townsend, J.G. Coffer, J.C. Camparo, Breakdown of the born approximation in laser phase-noise to amplitude-noise conversion. Phys. Rev. A. 72, 033807 (2005)

    Article  ADS  Google Scholar 

  21. P. Valente, H. Failache, A. Lezama, Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor. Eur. Phys. J. D. 50, 133 (2008)

    Article  ADS  Google Scholar 

  22. M. Martinelli, P. Valente, H. Failache, D. Felinto, L.S. Cruz, P. Nussenzveig, A. Lezama, Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor. Phys. Rev. A. 69, 043809 (2004)

    Article  ADS  Google Scholar 

  23. S. Alessandro, Villar, “The conversion of phase to amplitude fluctuations of a light beam by an optical cavity”. Am. J. Phys. 76, 922 (2008)

    Article  Google Scholar 

  24. W. Happer, Optical pumping. Rev. Mod. Phys. 44, 169 (1972)

    Article  ADS  Google Scholar 

  25. C.G. Aminoff, M. Pinard, Velocity selective optical pumping. J. Physique. 43, 263 (1982)

    Article  Google Scholar 

  26. S. Chakrabarti, A. Pradhan, B. Ray, P.N. Ghosh, Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium. J. Phys. B At. Mol. Opt. Phys. 38, 4321 (2005)

    Article  ADS  Google Scholar 

  27. A. Akulshin, M. Singh, A. Sidorov, P. Hannaford, Steep atomic dispersion induced by velocity-selective optical pumping. Opt. Express. 16, 15463 (2008)

    Article  ADS  Google Scholar 

  28. O.S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A.S. Sheremet, A. Bramati, D.V. Kupriyanov, J. Laurat, E. Giacobino, Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels. Phys. Rev. A. 83, 053809 (2011)

    Article  ADS  Google Scholar 

  29. M. Scherman, O.S. Mishina, P. Lombardi, E. Giacobino, J. Laurat, Enhancing electromagnetically-induced transparency in a multilevel broadened medium. Opt. Express. 20, 4346 (2012)

    Article  ADS  Google Scholar 

  30. J. Kitching, L. Hollberg, S. Knappe, R. Wynands, Frequency-dependent optical pumping in atomic lambda-systems. Opt. Lett. 26, 1507 (2001)

    Article  ADS  Google Scholar 

  31. J. Kitching, H.G. Robinson, L. Hollberg, S. Knappe, R. Wynands, Optical-pumping noise in laser-pumped, all-optical microwave frequency references. J. Opt. Soc. Am. B. 18, 1676 (2001)

    Article  ADS  Google Scholar 

  32. G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Frequency modulation (FM) spectroscopy. Appl. Phys. B Lasers Optics. 32, 145 (1983)

    Article  ADS  Google Scholar 

  33. Junxiang Zhang, Jin Cai, Yunfei Bai, Jiangrui Gao, Shi-Yao Zhu, Optimization of noise property of delayed light in electromagnetically induced transparency. Phys. Rev. A. 76, 033814 (2007)

    Article  ADS  Google Scholar 

  34. M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997), Chap. 7

  35. Julio Gea-Banacloche, Yong-qing Li, Shao-zheng Jin, Min Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A. 51, 576 (1995)

    Article  ADS  Google Scholar 

  36. Junxiang Zhang, Haitao Zhou, Dawei Wang, Shi-Yao Zhu, Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor. Phys. Rev. A. 83, 053841 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the NSFC (No. 10974126, 60821004), National Basic Research Program of China (No. 2010CB923102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Cai, D., Ma, R. et al. Resolution enhancement in noise spectrum by using velocity selective optical pumping in cesium vapor. Appl. Phys. B 109, 189–194 (2012). https://doi.org/10.1007/s00340-012-5211-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5211-6

Keywords

Navigation