Skip to main content
Log in

The manipulation of light pulse from subluminal to superluminal propagation in a degenerate two-level Cs atomic system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We experimentally demonstrate the propagation of light pulse from subluminal to superluminal light based on quantum coherence in a degenerate two-level atomic system in a Cs vapor cell. It is shown that the group velocity of light pulse can be switched from subluminal to superluminal propagation via changing the coupling field from a traveling wave to a standing wave, while can also be continuously manipulated by varying the intensity of two waves superposed to form a standing wave. The observed maximum delay and advance times are about 0.45 and 0.54 μs, corresponding to the group velocity of V s = 168 km/s and v g =−138 km/s, respectively. This investigation may have the practical applications of devices for optical tunable delay lines, optical switching and optical buffering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris S E. Electromagnetically induced transparency. Phys Tod, 1997, 50: 36–42

    Article  ADS  Google Scholar 

  2. Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature, 1999, 397: 594–598

    Article  ADS  Google Scholar 

  3. Lukin M D, Imamoğlu A. Controlling photons using electromagnetically induced transparency. Nature, 2001, 413: 273–276

    Article  ADS  Google Scholar 

  4. Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 2001, 409: 490–493

    Article  ADS  Google Scholar 

  5. Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor. Phys Rev Lett, 2001, 86: 783–786

    Article  ADS  Google Scholar 

  6. Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414: 413–418

    Article  ADS  Google Scholar 

  7. Akulshin A M, Barreiro S, Lezama A. Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys Rev A, 1998, 57: 2996–3002

    Article  ADS  Google Scholar 

  8. Bortman-Arbiv D, Wilson-Gordon A D, Friedmann H. Phase control of group velocity: From subluminal to superluminal light propagation. Phys Rev A, 2001, 63: 043818

    Article  ADS  Google Scholar 

  9. Budker D, Kimball D F, Rochester S M, et al. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys Rev Lett, 1999, 83: 1767–1770

    Article  ADS  Google Scholar 

  10. Agarwal G S, Dey T N, Menon S. Knob for changing light propagation from subluminal to superluminal. Phys Rev A, 2001, 64: 053809

    Article  ADS  Google Scholar 

  11. Affolderbach C, Knappe S, Wynands R, et al. Electromagnetically induced transparency and absorption in a standing wave. Phys Rev A, 2002, 65: 043810

    Article  ADS  Google Scholar 

  12. Zhang J P, Xu J, Hernandez G, et al. Polychromatic-field-induced transparency and absorption in a three-level Λ system. Phys Rev A, 2007, 75: 043810

    Article  ADS  Google Scholar 

  13. Strekalov D V, Matsko A B, Yu N. Electromagnetically induced transparency with a partially standing drive field. Phys Rev A, 2007, 76: 053828

    Article  ADS  Google Scholar 

  14. Zhukov A A, Zibrov S A, Romanov G V, et al. Electromagnetically induced absorption in a bichromatic laser field. Phys Rev A, 2009, 80: 033830

    Article  ADS  Google Scholar 

  15. Brown A W, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating. Opt Lett, 2005, 30: 699–701

    Article  ADS  Google Scholar 

  16. Zhang J X, Zhou H T, Wang D W, et al. Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor. Phys Rev A, 2011, 83: 053841

    Article  ADS  Google Scholar 

  17. Brillouin L. Wave Propagation and Group Velocity. New York: Academic, 1960

    MATH  Google Scholar 

  18. Kasapi A, Jain M, Yin G Y, et al. Electromagnetically induced transparency: Propagation dynamics. Phys Rev Lett, 1995, 74: 2447–2450

    Article  ADS  Google Scholar 

  19. Turukhin A V, Sudarshanam V S, Shahriar M S, et al. Observation of ultraslow and stored light pulses in a solid. Phys Rev Lett, 2001, 88: 023602

    Article  ADS  Google Scholar 

  20. Feng S, Yang G J, Li Y X, et al. Tunable slow-light multi-mode photonic crystal waveguides based on the coupling of square cavities. Sci China-Phys Mech Astron, 2012, 55: 1769–1775

    Article  ADS  Google Scholar 

  21. Wu J, Li Y P, Yang C C, et al. Slow light in tapered slot photonic crystal waveguide. Chin Sci Bull, 2009, 54: 3658–3662

    Article  Google Scholar 

  22. Liu Y, Jiang C. Enhanced parametric amplification in slow-light photonic crystal waveguides. Chin Sci Bull, 2009, 54: 2221–2224

    Article  Google Scholar 

  23. Wang L J, Kuzmich A, Dogariu A. Gain-assisted superluminal light propagation. Nature, 2000, 406: 277–279

    Article  ADS  Google Scholar 

  24. Gao F, Xu J J, Zhang G Q, et al. Nonlinear optical properties and superluminal propagation in the ruby. Chin Sci Bull, 2010, 55: 473–477

    Article  Google Scholar 

  25. Kim K, Moon H S, Lee C, et al. Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line. Phys Rev A, 2003, 68: 013810

    Article  ADS  Google Scholar 

  26. Kang H, Hernandez G, Zhu Y F. Superluminal and slow light propagation in cold atoms. Phys Rev A, 2004, 70: 011801

    Article  ADS  Google Scholar 

  27. Mikhailov E E, Sautenkov V A, Novikova I, et al. Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas. Phys Rev A, 2004, 69: 063808

    Article  ADS  Google Scholar 

  28. Bae I H, Moon H S. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell. Phys Rev A, 2011, 83: 053806

    Article  ADS  Google Scholar 

  29. Zhou H T, Guo M J, Wang D, et al. Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour. J Phys B, 2011, 44: 225503

    Article  ADS  Google Scholar 

  30. Wang D W, Zhou H T, Guo M J, et al. Optical diode made from a moving photonic crystal. Phys Rev Lett, 2013, 110: 093901

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunXiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jiang, Q., Liu, C. et al. The manipulation of light pulse from subluminal to superluminal propagation in a degenerate two-level Cs atomic system. Sci. China Phys. Mech. Astron. 57, 2246–2250 (2014). https://doi.org/10.1007/s11433-014-5615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5615-x

Keywords

Navigation