Skip to main content
Log in

Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Temporally resolved observation of microscopic structural dynamics of solids with ultrafast electron diffraction (UED) requires extremely short pulsed, highly charged, monoenergetic electron beams with sufficient transverse coherence length of several unit cells of the investigated samples. However, Coulomb repulsion defeats these parameters in free propagation of an electron pulse initially bright on the photo cathode. We demonstrate a new electron pulse compressor design based on a simple and compact RF structure incorporating a pair of gallium arsenide photoconductive semiconductor switches that are triggered by femtosecond laser pulses, thereby providing a longitudinal voltage gradient of up to 20 V/ps. Our proof of principle experiment achieved compression of bunches containing 26,000 electrons to a duration of below 750 fs and a beam diameter of 300 μm in the temporal and spatial focus of the device while maintaining the good beam collimation required for time resolved electron diffraction experiments. The simplicity of the compressor provides a strong incentive for its further development toward practical implementation in sub-relativistic UED experiments requiring the highest possible source brightness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciaini, R.J.D. Miller, Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010)

    Article  ADS  Google Scholar 

  2. E. Möhr-Vorobeva, S. Johnson, P. Beaud, U. Staub, R. De Souza, C. Milne, G. Ingold, J. Demsar, H. Schaefer, A. Titov, Nonthermal melting of a charge density wave in TiSe2. Phys. Rev. Lett. 117(036403), 1–4 (2011)

    Google Scholar 

  3. M. Woerner, F. Zamponi, Z. Ansari, J. Dreyer, B. Freyer, M. Prémont-Schwarz, T. Elsaesser, Concerted electron and proton transfer in ionic crystals mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 133, 064509 (2010)

    Article  ADS  Google Scholar 

  4. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn- von Hoegen, D. von der Linde, Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003)

    Article  ADS  Google Scholar 

  5. A. Morak, T. Kämpfer, I. Uschmann, A. Lübcke, E. Förster, R. Sauerbrey, Acoustic phonons in InSb probed by time-resolved X-ray diffraction. Phys. Status Solidi B 12, 2728–2744 (2006)

    Article  ADS  Google Scholar 

  6. C. Reich, P. Gibbon, I.E.F. Uschmann Yield optimization and time structure of femtosecond laser plasma Kα sources, Phys. Rev. Lett. 84, 4846–4849 (2000)

  7. M. Hagedorn, J. Kutzner, G. Tsimilis, H. Zacharias, High-repetition-rate hard X-ray generation with sub-milliJoule femtosecond laser pulses. Appl. Phys. B 77, 49–57 (2003)

    Article  Google Scholar 

  8. www.desy.de/~mpyflo/. Accessed 1 Apr 2012

  9. B.J. Siwick, R.J.D. Miller, Femtosecond electron diffraction studies of strongly driven structural phase transitions. Chem. Phys. 299, 285 (2004)

    Article  ADS  Google Scholar 

  10. C.T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, T. Dartigalongue, S.G. Kruglik, R.J.D. Miller, Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses. Opt. Express 16, 3335 (2008)

    Article  ADS  Google Scholar 

  11. B. Siwick, J. Dwyer, R. Jordan, D. Miller, An atomic view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003)

    Article  ADS  Google Scholar 

  12. H. Park, X. Wang, S. Nie, R. Clinite, J. Cao, Direct and real-time probing of both coherent and thermal lattice motions. Solid State Commun. 136(9–10), 559–563 (2005)

    Article  ADS  Google Scholar 

  13. P. Baum, D.-S. Yang, A. Zewail, 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788–792 (2007)

    Article  ADS  Google Scholar 

  14. P. Musumeci, J.T. Moody, C.M. Scoby, M.S. Gutierrez, H.A. Bender, N.S. Wilcox, High quality single shot diffraction patterns using ultrashort megaelectronvolt electron beams from a radio frequency photoinjector. Rev. Sci. Instrum. 81, 013306 (2010)

    Article  ADS  Google Scholar 

  15. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Ultrafast electron optics: propagation dynamics of femtosecond electron packets. J. Appl. Phys. 92, 1643 (2002)

    Article  ADS  Google Scholar 

  16. T. van Oudheusden, E.F. de Jong, S.B. van der Geer, W.P.E.M. Root, O.J. Luiten, B.J. Siwick, Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J. Appl. Phys. 102(9), 093501 (2007)

    Article  ADS  Google Scholar 

  17. E. Fill, L. Veisz, A. Apolonski, F. Krausz, Sub-fs electron pulses for ultrafast electron diffraction. New J. Phys. 8, 272 (2006)

    Article  ADS  Google Scholar 

  18. T. van Oudheusden, P.L.E.M. Pasmans, S.B. van der Geer, M.J. de Loos, M.J. van der Wiel, O.J. Luiten, Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105(26), 264801 (2010)

    Article  ADS  Google Scholar 

  19. G. Kassier, K. Haupt, N. Erasmus, E. Rohwer, H. Schwoerer, Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction. J. Appl. Phys. 105, 113111 (2009)

    Article  ADS  Google Scholar 

  20. Y. Wang, N. Gedik Electron pulse compression with a practical reflectron design for ultrafast electron diffraction, IEEE J. Sel. Topics Quantum Electron. (2011)

  21. S. Tokita, M. Hashida, S. Inoue, T. Nishoji, K. Otani, S. Sakabe, Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression. Phys. Rev. Lett. 105, 215004 (2010)

    Article  ADS  Google Scholar 

  22. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006)

    Article  ADS  Google Scholar 

  23. G. H. Kassier Ultrafast electron diffraction: source development, diffractometer design and pulse characterisation. PhD Thesis, Chapter 6, University of Stellenbosch, Stellenbosch (2010)

  24. A. Janzen, B. Krenzer, O. Heinz, P. Zhou, D. Thien, A. Hanisch, F. Heringdorf, D. von der Linde, M. von Horn Hoegen, A pulsed electron gun for ultrafast electron diffraction at surfaces. Rev. Sci. Instrum. 78, 13906 (2007)

    Article  ADS  Google Scholar 

  25. G. Kassier, K. Haupt, N. Erasmus, E. Rohwer, H. von Bergmann, H. Schwoerer, S. Coelho, D. Auret, A compact streak camera for 150 fs time resolved measurement of bright pulses in ultrafast electron diffraction. Rev. Sci. Instrum. 81(105103), 1–5 (2010)

    Google Scholar 

  26. http://laacg1.lanl.gov/laacg/. Accessed 1 Apr 2012

  27. O.J. Luiten, S.B. van der Geer, M.J. de Loos, F.B. Kiewiet, M.J. van der Wiel, Phys. Rev. Lett. 93, 94802 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation. We would like to thank Paul Papka for his help with the electron current measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Kassier.

Appendix: A formula for pulsed compressor performance

Appendix: A formula for pulsed compressor performance

The compressor described in this paper can be approximated by a parallel plate capacitor with a harmonically ramped axial electric field between the plates separated by distance d, complete with apertures for electron pulses to pass through in the axial direction (see figure and Fig. 6.7 in Ref. 23). Subject to the assumption that the electron pulse transit time through the compressor is less than T/3, where T is the oscillation period of the harmonic electric field dependence, the latter can be considered approximately linear. Furthermore, if the electron pulse duration σt is much smaller than T/3, it can be shown that the rms energy spread ΔE k that is imparted on an electron pulse of rms pulse duration σt, is given by [23]

$$ \Updelta E_{\text{k}} = \frac{\gamma }{{\beta^{2} \gamma^{2} + 1}}v_{z} \Updelta E\sigma_{\text{t}} $$
(1)

where γ is the Lorentz factor, β = v z/c with v z the electron velocity, and ΔE the electric field difference between the time at which the bunch enters and exits the compressor field respectively. Now, assuming a linear electric field ramp dE/dt such that ΔE = dE/dt × d/v z, using the fact that the voltage gradient dV/dt = dE/dt × d, and re-writing in terms of the relative rms energy spread ΔE k,r = ΔE k/E k, Eq. 1 yields

$$ \Updelta E_{\text{k,r}} = \frac{\gamma }{{\beta^{2} \gamma^{2} + 1}}\frac{{\sigma_{\text{t}} }}{{E_{\text{k}} }}\frac{dv}{dt} $$
(2)

In the subrelativistic regime, γ/(β2γ2 + 1) varies slowly with energy E k, and consequently the required compressor voltage to achieve a desired ΔE k,r at fixed compressor frequency and injected pulse duration scales roughly linearly with E k.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassier, G.H., Erasmus, N., Haupt, K. et al. Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction. Appl. Phys. B 109, 249–257 (2012). https://doi.org/10.1007/s00340-012-5207-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5207-2

Keywords

Navigation