Skip to main content
Log in

Intrapulse quantum cascade laser spectroscopy: pressure induced line broadening and shifting in the ν 6 band of formaldehyde

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A rapidly swept quantum cascade laser (QCL) has been used to probe a small region of the ν 6 band of formaldehyde around 8 μm by direct absorption spectroscopy. Two of the strongest transitions accessible within the operating region of the QCL are assigned as (1,1,1)←(2,0,2) and (10,1,9)←(9,2,8). In this paper, we report pressure-induced broadening and shift coefficients for these transitions with a variety of gases (He, Ne, Kr, Ar, N2, O2, and CO2). The pressure broadening coefficient measurements are shown (in some cases) to be chirp rate dependent, even under conditions where rapid passage effects are negligible, highlighting the marked difference that can occur between studies with rapidly swept fields and those employing conventional diode laser devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.D. Nelson, B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta 60, 3325 (2004)

    Article  Google Scholar 

  2. S. Wright, G. Duxbury, N. Langford, Appl. Phys. B 85, 243 (2006)

    Article  ADS  Google Scholar 

  3. A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 39, 6866 (2000)

    Article  ADS  Google Scholar 

  4. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 80, 617 (2005)

    Article  ADS  Google Scholar 

  5. S. Wehe, M. Allen, X. Liu, J. Jeffries, R. Hanson, Proc. IEEE 2, 795 (2003)

    Google Scholar 

  6. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 33, 725 (2011)

    Article  Google Scholar 

  7. J. Ropcke, G. Lombardi, A. Rousseau, P.B. Davies, Plasma Sources Sci. Technol. 15, 148 (2005)

    Article  Google Scholar 

  8. G.D. Stancu, A.V. Pipa, G. Lombardi, P.B. Davis, A. Gicquel, B.P. Lavrov, J. Ropcke, Contrib. Plasma Phys. 45, 358 (2005)

    Article  ADS  Google Scholar 

  9. S. Welzel, L. Gatilova, J. Ropcke, A. Rousseau, Plasma Sources Sci. Technol. 16, 822 (2007)

    Article  ADS  Google Scholar 

  10. G.D. Stancu, N. Lang, J. Ropcke, M. Reinicke, A. Steinbach, S. Wege, Chem. Vap. Depos. 13, 351 (2007)

    Article  Google Scholar 

  11. J. Ma, A. Cheesman, M.N.R. Ashfold, K.G. Hay, S. Wright, N. Langford, G. Duxbury, Y.A. Mankelevich, J. Appl. Phys. 106, 033305 (2009)

    Article  ADS  Google Scholar 

  12. S. Welzel, F. Hempel, M. Hubner, N. Lang, P.B. Davies, J. Ropcke, Sensors 10, 6861 (2010)

    Article  Google Scholar 

  13. M.R. McCurdy, Y. Bakhirin, G. Wysocki, R. Lewicki, F.K. Tittel, J. Breath Res. 1, 114001 (2007)

    Article  Google Scholar 

  14. K. Namjou, S. Cai, E.A. Whittaker, Opt. Lett. 23, 219 (1998)

    Article  ADS  Google Scholar 

  15. A.A. Kosterev, R.F. Curl, F.K. Tittel, Appl. Phys. B 75, 351 (2002)

    Article  ADS  Google Scholar 

  16. D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Appl. Phys. B 75, 343 (2002)

    Article  ADS  Google Scholar 

  17. D.D. Nelson, J.B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta A 60, 3325 (2004)

    Article  ADS  Google Scholar 

  18. S.C. Herndon, J.T. Jayne, P. Lobo, T.B. Onasch, G. Fleming, D.E. Hagen, P.D. Whitefield, R.C. Miake-Lye, Environ. Sci. Technol. 42, 1877 (2008)

    Article  Google Scholar 

  19. M.T. McCulloch, E.L. Normand, N. Langford, G. Duxbury, D.A. Newnham, J. Opt. Soc. Am. B 20, 1761 (2003)

    Article  ADS  Google Scholar 

  20. G. Duxbury, N. Langford, M.T. McCulloch, S. Wright, Chem. Soc. Rev. 34, 921 (2005)

    Article  Google Scholar 

  21. M.M.T. Loy, Phys. Rev. Lett. 32, 814 (1974)

    Article  ADS  Google Scholar 

  22. M.T. McCulloch, G. Duxbury, N. Langford, Mol. Phys. 104, 2767 (2006)

    Article  ADS  Google Scholar 

  23. G. Duxbury, N. Langford, M.T. McCulloch, S. Wright, Mol. Phys. 105, 741 (2007)

    Article  ADS  Google Scholar 

  24. J.H. van Helden, S.J. Horrocks, G.A.D. Ritchie, Appl. Phys. Lett. 92, 081506 (2008)

    Article  ADS  Google Scholar 

  25. Cancer risks of formaldehyde remains controversial. Chem. Eng. News 17 (1984)

  26. A. Wootten, R.B. Loren, J. Bally, Astrophys. J. 277, 189 (1984)

    Article  ADS  Google Scholar 

  27. D.R. Johnson, F.J. Lovas, W.H. Kirchhoff, J. Phys. Chem. Ref. Data 1, 1011 (1972)

    Article  ADS  Google Scholar 

  28. M. Crow, A. Gilchrist, G. Hancock, R. Peverall, G. Richmond, G. Ritchie, S. Taylor, J. Phys. Chem. A 113, 6689 (2009)

    Article  Google Scholar 

  29. A. Gratien, E. Nilsson, J. Doussin, M. Johnson, C. Nielsen, Y. Stenstrom, B. Picquet-Varrault, J. Phys. Chem. A 111, 11506 (2007)

    Article  Google Scholar 

  30. PGOPHER, a Program for Simulating Rotational Structure, C. M. Western, University of Bristol. http://pgopher.chm.bris.ac.uk

  31. M. Allegrini, J.W.C. Johns, A.R.W. McKellar, J. Mol. Spectrosc. 67, 476 (1967)

    Article  ADS  Google Scholar 

  32. V. Nemtchinov, K. Sung, P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 83, 243 (2004)

    Article  ADS  Google Scholar 

  33. M. Dhib, J.P. Bounaich, H. Aroui, M. Broquier, J. Mol. Spectrosc. 202, 83 (2000)

    Article  ADS  Google Scholar 

  34. G.P. Srivastava, H.O. Gautam, A. Kumar, J. Phys. B 6, 743 (1973)

    Article  ADS  Google Scholar 

  35. A.C. Venkatachur, J.A. Roberts, J. Mol. Spectrosc. 57, 166 (1975)

    Article  ADS  Google Scholar 

  36. D.V. Rogers, J.A. Roberts, J. Mol. Spectrosc. 46, 200 (1973)

    Article  ADS  Google Scholar 

  37. F.H. Dyksterhuis, N.R. Heckendburg, J. Mol. Spectrosc. 77, 147 (1979)

    Article  ADS  Google Scholar 

  38. H.R. Barry, L. Corner, G. Hancock, R. Peverall, T.L. Ranson, G.A.D. Ritchie, Phys. Chem. Chem. Phys. 5, 3106 (2003)

    Article  Google Scholar 

  39. A.S. Pine, J. Mol. Spectrosc. 70, 167 (1978)

    Article  ADS  Google Scholar 

  40. D.S. Cline, P.L. Varghese, Appl. Opt. 27, 3219 (1988)

    Article  ADS  Google Scholar 

  41. D. Jacquemart, A. Laraia, F. Kwabia Tchana, R.R. Gamache, A. Perrin, N. Lacome, J. Quant. Spectrosc. Radiat. Transf. 111, 1209 (2010)

    Article  ADS  Google Scholar 

  42. S. Nadler, S.J. Daunt, D.C. Reuter, Appl. Opt. 26, 1641 (1987)

    Article  ADS  Google Scholar 

  43. S. Herndon, S. Zahniser, D. Nelson, J. Shorter, J. McManus, R. Jimenez, J. Geophys. Res. 112(D10), D10S03-115 (2007)

    Article  ADS  Google Scholar 

  44. N. Tasinato, K. Hay, N. Langford, G. Duxbury, D. Wilson, J Chem Phys 132, 164301

Download references

Acknowledgements

Lingfang Wang would like to gratefully acknowledge the China Scholarship Council (CSC) for the award of a scholarship. We would like to thank Dr. Grant Ritchie and Prof. Gus Hancock for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Sharples, T.R. Intrapulse quantum cascade laser spectroscopy: pressure induced line broadening and shifting in the ν 6 band of formaldehyde. Appl. Phys. B 108, 427–435 (2012). https://doi.org/10.1007/s00340-012-5085-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5085-7

Keywords

Navigation