Skip to main content
Log in

Investigation of the kinetics of OH and CH chemiluminescence in hydrocarbon oxidation behind reflected shock waves

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The temporal variation of chemiluminescence emission from OH(A2 Σ +) and CH(A2 Δ) in reacting Ar-diluted H2/O2/CH4, C2H2/O2 and C2H2/N2O mixtures was studied in a shock tube for a wide temperature range at atmospheric pressures and various equivalence ratios. Time-resolved emission measurements were used to evaluate the relative importance of different reaction pathways. The main formation channel for OH in hydrocarbon combustion was studied with CH4 as benchmark fuel. Three reaction pathways leading to CH were studied with C2H2 as fuel. Based on well-validated ground-state chemistry models from literature, sub-mechanisms for OH and CH were developed. For the main OH-forming reaction CH+O2=OH+CO, a rate coefficient of k 2=(8.0±2.6)×1010 cm3 mol−1 s−1 was determined. For CH formation, best agreement was achieved when incorporating reactions C2+OH=CH+CO (k 5=2.0×1014 cm3 mol−1 s−1) and C2H+O=CH+CO (k 6=3.6×1012exp(−10.9 kJ mol−1/RT) cm3 mol−1 s−1) and neglecting the C2H+O2=CH+CO2 reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Kojima, Y. Ikeda, T. Nakajima, Combust. Flame 140, 34 (2005)

    Article  Google Scholar 

  2. H.N. Najm, P.H. Paul, C.J. Mueller, P.S. Wyckoff, Combust. Flame 113, 312 (1998)

    Article  Google Scholar 

  3. J.G. Lee, D.A. Santavicca, J. Propuls. Power 19, 735 (2003)

    Article  Google Scholar 

  4. N. Docquier, S. Candel, Prog. Energy Combust. Sci. 28, 107 (2002)

    Article  Google Scholar 

  5. Y. Hardalupas, M. Orain, Combust. Flame 139, 188 (2004)

    Article  Google Scholar 

  6. P.G. Aleiferis, Y. Hardalupas, A.M.K.P. Taylor, K. Ishii, Y. Urata, Exp. Fluids 39, 789 (2005)

    Article  Google Scholar 

  7. T.M. Muruganandam, B.H. Kim, M.R. Morrell, V. Nori, M. Patel, B.W. Romig, J.M. Seitzman, Proc. Combust. Inst. 30, 1601 (2005)

    Article  Google Scholar 

  8. T. Kathrotia, M. Fikri, M. Bozkurt, M. Hartmann, U. Riedel, C. Schulz, Combust. Flame 157, 1261 (2010)

    Article  Google Scholar 

  9. J.M. Hall, E.L. Petersen, Int. J. Chem. Kinet. 38, 714 (2006)

    Article  Google Scholar 

  10. W.E. Kaskan, J. Chem. Phys. 31, 944 (1959)

    Article  ADS  Google Scholar 

  11. T. Koike, K. Morinaga, Bull. Chem. Soc. Jpn. 55, 52 (1982)

    Article  Google Scholar 

  12. Y. Hidaka, S. Takahashi, H. Kawano, M. Suga, W.C. Gardiner Jr., J. Phys. Chem. 86, 1429 (1982)

    Article  Google Scholar 

  13. G.P. Smith, C. Park, J. Luque, Combust. Flame 140, 385 (2005)

    Article  Google Scholar 

  14. E.L. Petersen, D.M. Kalitan, M.J.A. Rickard, in 39th AIAA Joint Propulsion Conference and Exhibit, AIAA 2003-4493, Huntsville, AL, 2003

    Google Scholar 

  15. O.V. Skrebkov, S.P. Karkach, V.M. Vasil’ev, A.L. Smirnov, Chem. Phys. Lett. 375, 413 (2003)

    Article  ADS  Google Scholar 

  16. O.V. Skrebkov, Y.P. Myagkov, S.P. Karkach, V.M. Vasil’ev, A.L. Smirnov, Dokl., Phys. Chem. 383, 93 (2002)

    Article  Google Scholar 

  17. G.D. Smekhov, L.B. Ibraguimova, S.P. Karkach, O.V. Skrebkov, O.P. Shatalov, High Temp. 45, 395 (2007)

    Article  Google Scholar 

  18. M. Kopp, N. Donato, M. Brower, E.L. Petersen, Appl. Phys. B (2012, in press)

  19. F.E. Belles, M.R. Lauver, J. Chem. Phys. 40, 415 (1964)

    Article  ADS  Google Scholar 

  20. R.P. Porter, A.H. Clark, W.E. Kaskan, W.E. Browne, Proc. Combust. Inst. 11, 907 (1967)

    Google Scholar 

  21. D. Gutman, R.W. Lutz, N.F. Jacobs, E.A. Hardwidge, G.L. Schott, J. Chem. Phys. 48, 5689 (1968)

    Article  ADS  Google Scholar 

  22. W.C. Gardiner Jr., K. Morinaga, D.L. Ripley, T. Takeyama, Phys. Fluids 12, 120 (1969)

    Article  ADS  Google Scholar 

  23. J. Grebe, K.H. Homann, Ber. Bunsenges. Phys. Chem. 86, 587 (1982)

    Google Scholar 

  24. D.A. Lichtin, M.R. Berman, M.C. Lin, Chem. Phys. Lett. 108, 18 (1984)

    Article  ADS  Google Scholar 

  25. P.H. Paul, J.L. Durant Jr., J.A. Gray, M.R. Furlanetto, J. Chem. Phys. 102, 8378 (1995)

    Article  ADS  Google Scholar 

  26. S.A. Carl, M. Van Poppel, J. Peeters, J. Phys. Chem. A 107, 11001 (2003)

    Google Scholar 

  27. G.P. Smith, J. Luque, C. Park, J.B. Jeffries, D.R. Crosley, Combust. Flame 131, 59 (2002)

    Article  Google Scholar 

  28. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke, Appl. Phys. B (2012, in press). doi:10.1007/s00340-012-5002-0

  29. H.P. Broida, A.G. Gaydon, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 218, 60 (1953)

    Article  ADS  Google Scholar 

  30. A.M. Bass, H.P. Broida, Natl. Bur. Stand. Monogr. 24, 20 (1961)

    Google Scholar 

  31. A.G. Gaydon, The Spectroscopy of Flames (Wiley, New York, 1957)

    Google Scholar 

  32. R. Bleekrode, W.C. Nieuwpoort, J. Chem. Phys. 43, 3680 (1965)

    Article  ADS  Google Scholar 

  33. E.M. Bulewicz, P.J. Padley, R.E. Smith, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 315, 129 (1970)

    Article  ADS  Google Scholar 

  34. G.P. Glass, G.B. Kistiakowsky, J.V. Michael, H. Niki, J. Chem. Phys. 42, 608 (1965)

    Article  ADS  Google Scholar 

  35. W. Brennen, T. Carrington, J. Chem. Phys. 46, 7 (1967)

    Article  ADS  Google Scholar 

  36. A. Brockhinke, M. Heusing, J. Krüger, M. Letzgus, Appl. Phys. B (2012, in press)

  37. R.G. Joklik, J.W. Daily, W.J. Pitz, Proc. Combust. Inst. 21, 895 (1988)

    Google Scholar 

  38. K. Devriendt, H. Van Look, B. Ceursters, J. Peeters, Chem. Phys. Lett. 261, 450 (1996)

    Article  ADS  Google Scholar 

  39. K. Devriendt, J. Peeters, J. Phys. Chem. 101, 2546 (1997)

    Article  Google Scholar 

  40. J.M. Hall, J. de Vries, A.R. Amadio, E.L. Petersen, in 43th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-1318, Reno, NV, 2005

    Google Scholar 

  41. R.M.I. Elsamra, S. Vranckx, S.A. Carl, J. Phys. Chem. A 109, 10287 (2005)

    Google Scholar 

  42. C.W. Hand, G.B. Kistiakowsky, J. Chem. Phys. 37, 1239 (1962)

    Article  ADS  Google Scholar 

  43. D. Gutman, S. Matsuda, J. Chem. Phys. 52, 4122 (1970)

    Article  ADS  Google Scholar 

  44. S. Matsuda, I.R. Slagle, D.J. Fife, J.R. Marquart, D. Gutman, J. Chem. Phys. 57, 5277 (1972)

    Article  ADS  Google Scholar 

  45. A.M. Renlund, F. Shokoohi, H. Reisler, C. Wittig, Chem. Phys. Lett. 84, 293 (1981)

    Article  ADS  Google Scholar 

  46. S.M. Hwang, W.C. Gardiner Jr., M. Frenklach, Y. Hidaka, Combust. Flame 67, 65 (1987)

    Article  Google Scholar 

  47. R.J. Kee, F.M. Rupley, J.A. Miller, M.E. Coltrin, J.F. Grcar, E. Meeks, H.K. Moffat, A.E. Lutz, G. Dixon-Lewis, M.D. Smooke, J. Warnatz, G.H. Evans, R.S. Larson, R.E. Mitchell, L.R. Petzold, W.C. Reynolds, M. Caracotsios, W.E. Stewart, P. Glarborg, C. Wang, O. Adigun, in CHEMKIN Collection, San Diego, CA, 2000; vol. Release 3.6

    Google Scholar 

  48. M. Frenklach, M. Goldenberg, N. Moriarty, C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. Gardiner Jr., V. Lissianski, G.P. Smith, D.M. Golden, R.V. Serauskas, in Proc. Int. Gas Res. Conf. (1998), pp. 329–336

    Google Scholar 

  49. P.A. Berg, D.A. Hill, A.R. Noble, G.P. Smith, J.B. Jeffries, D.R. Crosley, Combust. Flame 121, 223 (2000)

    Article  Google Scholar 

  50. J.M. Hall, E.L. Petersen, in 40th AIAA Joint Propulsion and Exhibit, AIAA 2005-4164, Fort Lauderdale, 2004

    Google Scholar 

  51. H. Wang, A. Laskin, in A Comprehensive Kinetic Model of Ethylene and Acetylene Oxidation at High Temperatures (Department of Mechanical Engineering, University of Delaware, 1998)

  52. B.A. Williams, L. Pasternack, Combust. Flame 111, 87 (1997)

    Article  Google Scholar 

  53. T. Kathrotia, Reaction kinetics modeling of OH, CH, and \(\mathrm{C}_{2}^{*}\) chemiluminescence, PhD Thesis, Heidelberg, 2011

  54. M. Tamura, P.A. Berg, J.E. Harrington, J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, Combust. Flame 114, 502 (1998)

    Article  Google Scholar 

  55. N.L. Garland, D.R. Crosley, Chem. Phys. Lett. 134, 189 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support within the cooperative project “Chemiluminescence and heat release”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozkurt, M., Fikri, M. & Schulz, C. Investigation of the kinetics of OH and CH chemiluminescence in hydrocarbon oxidation behind reflected shock waves. Appl. Phys. B 107, 515–527 (2012). https://doi.org/10.1007/s00340-012-5012-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5012-y

Keywords

Navigation