Skip to main content
Log in

A laser diagnostic at 427 nm for quantitative measurements of CH in a shock tube

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The methylidyne radical (CH) is a hydrocarbon combustion intermediate of great importance in the prompt formation of NO, a highly regulated pollutant. Recent work in modeling the combustion chemistry of NO has highlighted the need for further study of CH and its associated high-temperature chemistry. This paper details the new development of a fixed-wavelength, cw laser absorption diagnostic for measurements of CH at high temperatures behind reflected shock waves. A detailed spectroscopic model was utilized to predict CH absorption within the A ← X band of CH, and the broadening coefficient of the selected blended transition was measured in a series of fixed-wavelength measurements. A demonstration of the diagnostic was performed in highly Ar-diluted C2H6/O2 and CH4/O2 mixtures between 1750 and 3050 K near 101 kPa. For both mixtures, experimental peak levels of CH were found to be generally overestimated by 40–80% by two chemical kinetics mechanisms. Such discrepancies highlight the need for further refinement of CH chemistry, which could be facilitated through future applications of this diagnostic and through the data provided herein. To the best of the authors’ knowledge, this study provides the first CH profiles measured in C2H6 oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Kojima, Y. Ikeda, T. Nakajima, Proc. Comb. Inst. 28, 1757 (2000)

    Article  Google Scholar 

  2. J.A. Miller, C.T. Bowman, Prog. Ener. Comb. Sci. 15, 287 (1989)

    Article  Google Scholar 

  3. C.P. Fenimore, Symp. (Int.) on Combust. 13, 373 (1971)

    Article  Google Scholar 

  4. P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Prog. Energy Comb. Sci. 67, 31 (2018)

    Article  Google Scholar 

  5. J. Luque, R.J.H. Klein-Douwel, J.B. Jeffries, G.P. Smith, D.R. Crosley, App. Phys. B 75, 779 (2002)

    ADS  Google Scholar 

  6. R. Evertsen, R.L. Stolk, J.J. Ter Meulen, Comb. Sci. Tech. 149, 19 (1999)

    Article  Google Scholar 

  7. A.J. Dean, R.K. Hanson, J. Quant. Spec. Rad. Trans. 42, 375 (1989)

    Article  ADS  Google Scholar 

  8. A.J. Dean, R.K. Hanson, C.T. Bowman, Symp. (Int.) on Combust. 23, 259 (1991)

    Article  Google Scholar 

  9. V. Vasudevan, R.K. Hanson, C.T. Bowman, D.M. Golden, D.F. Davidson, J. Phys. Chem. A 111, 11818 (2007)

    Article  Google Scholar 

  10. A.J. Dean, R.K. Hanson, Int. J. Chem. Kin. 24, 517 (1992)

    Article  Google Scholar 

  11. D. Woiki, M. Votsmeier, D.F. Davidson, R.K. Hanson, C.T. Bowman, Combust. Flame 113, 624 (1998)

    Article  Google Scholar 

  12. M. Röhrig, E.L. Petersen, D.F. Davidson, R.K. Hanson, C.T. Bowman, Int. J. Chem. Kin. 29, 781 (1997)

    Article  Google Scholar 

  13. V. Vasudevan, R.K. Hanson, D.M. Golden, C.T. Bowman, D.F. Davidson, J. Phys. Chem. A 111, 4062 (2007)

    Article  Google Scholar 

  14. M.W. Markus, D. Woiki, P. Roth, Symp. (Int.) on Combust. 24, 581 (1992)

    Article  Google Scholar 

  15. M.W. Markus, P. Roth, A.M. Tereza, Symp. (Int.) on Combust. 25, 705 (1994)

    Article  Google Scholar 

  16. M.W. Markus, P. Roth, T. Just, Int. J. Chem. Kin. 28, 171 (1996)

    Article  Google Scholar 

  17. E.L. Petersen, M.J. Rickard, M.W. Crofton, E.D. Abbey, M.J. Traum, D.M. Kalitan, Meas. Sci. Tech. 16, 1716 (2005)

    Article  ADS  Google Scholar 

  18. J.C. Luque, D.R., (SRI International, Menlo Park, CA, SRI International Report MP 99-0099, 1999)

  19. M. Zachwieja, J. Mol. Spectr. 170, 285 (1995)

    Article  ADS  Google Scholar 

  20. C.R. Brazier, J.M. Brown, Canadian. J. Phys. 62, 1563 (1984)

    ADS  Google Scholar 

  21. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg et al., http://www.me.berkeley.edu/gri_mech/(1999)

  22. C.-W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Ding et al., Combust. Flame 197, 423 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the TEES Turbomachinery Laboratory and the Aerospace Corporation’s Internal Research and Development program. A critical portion of the CH diagnostic setup was funded by Siemens Canada, with Dr. Gilles Bourque as project monitor. Additional funding came from the National Science Foundation, Grant Number CBET-1706825. The authors wish to thank J.L. Elms for significant contributions to the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Mulvihill.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulvihill, C.R., Crofton, M.W., Arnold, D.G. et al. A laser diagnostic at 427 nm for quantitative measurements of CH in a shock tube. Appl. Phys. B 125, 78 (2019). https://doi.org/10.1007/s00340-019-7188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7188-x

Navigation