Skip to main content
Log in

Comparison of one- and three-dimensional computational fluid dynamics models of the supersonic chemical oxygen–iodine laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A simple one-dimensional (1D) computational fluid dynamics (CFD) model of the chemical oxygen iodine laser (COIL) with supersonic mixing is compared with three-dimensional (3D) CFD models and with experimental measurements of the COIL parameters. Dependence of the gain, iodine dissociation fraction and temperature at the resonator optical axis and of the output lasing power on the iodine flow rate predicted by the 1D model is in good agreement with that found using 3D models and experimental results. Hence the 1D model can be used instead of much more complicated 3D models for estimates of the working parameters of supersonic COILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.E. McDermott, N.R. Pchelkin, D.J. Benard, R.R. Bousek, Appl. Phys. Lett. 32, 469 (1978)

    Article  ADS  Google Scholar 

  2. M. Suzuki, T. Suzuki, W. Masuda, Proc. SPIE 4184, 99 (2001)

    Article  Google Scholar 

  3. T.G. Madden, Proc. SPIE 5120, 363 (2003)

    Article  ADS  Google Scholar 

  4. A.S. Boreisho, A.B. Barkan, D.N. Vasil’ev, I.M. Evdokimov, A.V. Savin, Quantum Electron. 35, 495 (2005)

    Article  ADS  Google Scholar 

  5. T. Madden, Proc. SPIE 6346, 634620 (2007)

    Article  Google Scholar 

  6. K. Waichman, V. Rybalkin, A. Katz, Z. Dahan, B.D. Barmashenko, S. Rosenwaks, J. Appl. Phys. 102, 013108 (2007)

    Article  ADS  Google Scholar 

  7. K. Waichman, B.D. Barmashenko, S. Rosenwaks, J. Appl. Phys. 104, 013113 (2008)

    Article  ADS  Google Scholar 

  8. K. Waichman, B.D. Barmashenko, S. Rosenwaks, J. Appl. Phys. 106, 063108 (2009)

    Article  ADS  Google Scholar 

  9. K. Waichman, B.D. Barmashenko, S. Rosenwaks, J. Chem. Phys. 133, 084301 (2010)

    Article  ADS  Google Scholar 

  10. B.D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, J. Appl. Phys. 75, 7653 (1994)

    Article  ADS  Google Scholar 

  11. A. Elior, B.D. Barmashenko, E. Lebiush, S. Rosenwaks, Appl. Phys. B 61, 37 (1995)

    Article  ADS  Google Scholar 

  12. D.L. Carroll, AIAA J. 33, 1454 (1995)

    Article  ADS  Google Scholar 

  13. B.D. Barmashenko, S. Rosenwaks, AIAA J. 34, 2569 (1996)

    Article  ADS  Google Scholar 

  14. T.T. Yang, R.A. Cover, V. Quan, D.M. Smith, A.H. Bauer, W.E. McDermott, D.A. Copeland, Proc. SPIE 2989, 126 (1997)

    Article  ADS  Google Scholar 

  15. E. Bruins, D. Furman, V. Rybalkin, B.D. Barmashenko, S. Rosenwaks, IEEE J. Quantum Electron. 38, 345 (2002)

    Article  ADS  Google Scholar 

  16. V. Rybalkin, A. Katz, B.D. Barmashenko, S. Rosenwaks, J. Appl. Phys. 98, 023106 (2005)

    Article  ADS  Google Scholar 

  17. V. Rybalkin, A. Katz, E. Bruins, D. Furman, B.D. Barmashenko, S. Rosenwaks, IEEE J. Quantum Electron. 38, 1398 (2002)

    Article  ADS  Google Scholar 

  18. V.N. Azyazov, S.Yu. Pichugin, M.C. Heaven, J. Chem. Phys. 130, 104306 (2009)

    Article  ADS  Google Scholar 

  19. M.V. Zagidullin, V.D. Nikolaev, M.I. Svistun, N.A. Khvatov, B.T. Anderson, R.F. Tate, G.D. Hager, Quantum Electron. 31, 678 (2001)

    Article  ADS  Google Scholar 

  20. B.D. Barmashenko, D. Furman, S. Rosenwaks, Appl. Opt. 37, 5697 (1998)

    Article  ADS  Google Scholar 

  21. J.A. Miller, E.J. Jumper, AIAA J. 32, 1228 (1994)

    Article  ADS  Google Scholar 

  22. R.F. Heidner III, C.E. Gardner, G.I. Segal, T.M. El-Sayed, J. Phys. Chem. 87, 2348 (1983)

    Article  Google Scholar 

  23. W. Rigrod, IEEE J. Quantum Electron. 14, 377 (1978)

    Article  ADS  Google Scholar 

  24. V.N. Azyazov, M.V. Zagidullin, V.N. Nikolaev, V.S. Safonov, Quantum Electron. 27, 477 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Barmashenko.

Appendix: Conservation equations in the mixed stream

Appendix: Conservation equations in the mixed stream

The equations for ω(Z) have the form:

$$ \frac{d\omega ( Z )}{dx} = m(Z) \cdot R(Z) \cdot A,$$
(6)

where x is the distance along the flow, m(Z) the molecular weight of the Z-component, R(Z) the chemical production rate of species Z, and A is the total cross section area of the mixed stream. Unlike [15], the terms corresponding to entrainment of the primary gas into the mixed layer were not included since, as mentioned in Sect. 2, for the entire mixing the primary stream was absent downstream of the instantaneous mixing in the aerodynamic throat.

The dependencies of A, U and T are found from the mass, momentum and energy conservation equations:

(7)
(8)
(9)

where ω=∑ Z ω(Z), m=∑ Z ω(Z)⋅m(Z)/ω is the average molecular mass, h and c p are the specific (per unit mass) enthalpy and heat capacities, given by h=∑ Z ω(Z)⋅h(Z)/ω and c p=∑ Z ω(Z)⋅c p(Z)/ω, respectively, and h(Z) and c p(Z) are the specific enthalpy of formation and heat capacity for the Z-component.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brami-Rosilio, I., Barmashenko, B.D. & Rosenwaks, S. Comparison of one- and three-dimensional computational fluid dynamics models of the supersonic chemical oxygen–iodine laser. Appl. Phys. B 108, 615–621 (2012). https://doi.org/10.1007/s00340-012-5007-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5007-8

Keywords

Navigation