Skip to main content
Log in

Measurement and simulation of rotationally-resolved chemiluminescence spectra in flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In recent years, there has been renewed interest in chemiluminescence, since it has been shown that these emissions can be used to determine flame parameters such as stoichiometry and heat release under some conditions. Even though the origin of these emissions has been known for a long time, little attention has been paid to the detailed analysis of the spectral structure.

In this contribution, we present rotationally-resolved spectra of all important chemiluminescent emissions OH A-X, CH B-X, CH A-X, and C2 d-a in CH4/air flames. A numerical model based on the LASKINν 2 code has been developed that allows, for the first time, to accurately predict the shape of the measured spectra for all of these transitions. Reabsorption of chemiluminescence within the emitting flame is shown to be a major factor, affecting both intensity and structure of OH spectra. Even in lab-scale flames, it might change the intensity of individual lines by a factor of 5. The shape of chemiluminescence spectra depends on several processes including initial state distribution and rotational and vibrational energy transfer (which, in turn, depend on the collisional environment and the temperature). It is shown that chemical reactions form OH in highly excited states and that the number of collisions is not sufficient to equilibrate the initial distribution. Therefore, high apparent temperatures are necessary to describe the shape of the measured spectra. In contrast, CH is formed with less excess energy and the spectral shape is very close to thermal. The rotational structure of \(\mathrm{C}_{2}^{*}\) is close to thermal equilibrium as well. Vibrational temperatures are, however, significantly higher than the flame temperature. Implications and perspectives for flame measurements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Biagioli, F. Güthe, B. Schuermans, Exp. Therm. Fluid Sci. 32, 1344 (2008)

    Article  Google Scholar 

  2. R. Bleekrode, W.C. Nieuwpoort, J. Chem. Phys. 43, 3680 (1965)

    Article  ADS  Google Scholar 

  3. M. Bozkurt, M. Fikri, C. Schulz, Appl. Phys. B (2012, in press). doi:10.1007/s00340-012-5012-y

  4. A. Brockhinke, K. Kohse-Höinghaus, Faraday Discuss. 119, 275 (2001)

    Article  ADS  Google Scholar 

  5. A. Brockhinke, M. Linne, in Applied Combustion Diagnostics. Taylor and Francis, New York (2002), pp. 128–154

    Google Scholar 

  6. A. Brockhinke, U. Lenhard, A. Bülter, K. Kohse-Höinghaus, Phys. Chem. Chem. Phys. 7, 874 (2005)

    Article  Google Scholar 

  7. A. Brockhinke, M. Letzgus, S. Rinne, K. Kohse-Höinghaus, J. Phys. Chem. A 110, 3028 (2006)

    Google Scholar 

  8. K. Kohse-Höinghaus, A. Brockhinke, Combust. Expl. Shock Waves 45, 349 (2009)

    Article  Google Scholar 

  9. H.P. Broida, D.F. Heath, J. Chem. Phys. 26, 223 (1957)

    Article  ADS  Google Scholar 

  10. H.P. Broida, H.J. Kostowski, J. Chem. Phys. 25, 676 (1956)

    Article  ADS  Google Scholar 

  11. S.L.N.G. Krishnamachari, H.P. Broida, J. Chem. Phys. 34, 1709 (1961)

    Article  ADS  Google Scholar 

  12. J.M. Brown, E.A. Colbourn, J.K.G. Watson, F.D. Wayne, J. Mol. Spectrosc. 74, 294 (1979)

    Article  ADS  Google Scholar 

  13. J.M. Brown, A.J. Merer, J. Mol. Spectrosc. 74, 488 (1979)

    Article  ADS  Google Scholar 

  14. A. Bülter, U. Rahmann, K. Kohse-Höinghaus, A. Brockhinke, Appl. Phys. B 79, 113 (2004)

    Article  ADS  Google Scholar 

  15. S. Candel, Proc. Combust. Inst. 29, 1 (2002)

    Article  Google Scholar 

  16. S. Cheskis, Prog. Energy Combust. Sci. 25, 233 (1999)

    Article  Google Scholar 

  17. J.W. Daily, Prog. Energy Combust. Sci. 23, 133 (1997)

    Article  Google Scholar 

  18. K. Devriendt, H. Van Look, B. Ceursters, J. Peeters, Chem. Phys. Lett. 261, 450 (1996)

    Article  ADS  Google Scholar 

  19. J. de Vries, J.M. Hall, S.L. Simmons, M.J.A. Rickard, D.M. Kalitan, E.L. Petersen, Combust. Flame 150, 137 (2007)

    Article  Google Scholar 

  20. N. Docquier, S. Belhalfqoui, F. Lacas, N. Darabiha, Proc. Combust. Inst. 28, 1765 (2000)

    Article  Google Scholar 

  21. R. Evertsen, J.A. Van Oijen, R.T.E. Hermanns, L.P.H. De Goey, J.J. Ter Meulen, Combust. Flame 132, 34 (2003)

    Article  Google Scholar 

  22. A.G. Gaydon, H.G. Wolfhard, Proc. R. Soc. 199, 89 (1949)

    Article  ADS  Google Scholar 

  23. A.G. Gaydon, The Spectroscopy of Flames (Wiley, New York, 1974)

    Book  Google Scholar 

  24. A.G. Gaydon, H.G. Wolfhard, Flames, Their Structure, Radiation and Temperature (Wiley, New York, 1970)

    Google Scholar 

  25. E. Goos, A. Burcat, B. Ruscic, New NASA Thermodynamic Polynomials Database With Active Thermochemical Tables updates, Report ANL 05/20 TAE 960, 2011

  26. P. Gopalakrishnan, M.K. Bobba, J.M. Seitzman, Proc. Combust. Inst. 31, 3401 (2007)

    Article  Google Scholar 

  27. J. Grebe, K.H. Homann, Ber. Bunsenges. Phys. Chem. 86, 587 (1982)

    Google Scholar 

  28. F. Guethe, D. Guyot, G. Singla, N. Noiray, B. Schuermans, Appl. Phys. B (2012, in press)

  29. J.M. Hall, J. Vries, A. Amadio, E.L. Petersen, in Aerospace Sciences Meeting and Exhibit, vol. 43 (2005)

    Google Scholar 

  30. Y. Hardalupas, M. Orain, C.S. Panoutsos, A.M.K.P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, J. Klingmann, Appl. Therm. Eng. 24, 1619 (2004)

    Article  Google Scholar 

  31. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, ACM Trans. Math. Softw. 31, 363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Ikeda, J. Kojima, H. Hahimoto, Proc. Combust. Inst. 29, 1495 (2002)

    Article  Google Scholar 

  33. W.R. Kane, H.P. Broida, J. Chem. Phys. 21, 347 (1953)

    Article  ADS  Google Scholar 

  34. R. Kienle, M.P. Lee, K. Kohse-Höinghaus, Appl. Phys. B 63, 403 (1996)

    ADS  Google Scholar 

  35. M. Köhler, A. Brockhinke, M. Braun-Unkhoff, K. Kohse-Höinghaus, J. Phys. Chem. A 114, 4719 (2010)

    Article  Google Scholar 

  36. K. Kohse-Höinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor & Francis, New York, 2002)

    Google Scholar 

  37. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30, 89 (2005)

    Article  Google Scholar 

  38. J. Kojima, Y. Ikeda, T. Nakajima, Proc. Combust. Inst. 28, 1757 (2000)

    Article  Google Scholar 

  39. J. Kojima, Y. Ikeda, T. Nakajima, Combust. Flame 140, 34 (2005)

    Article  Google Scholar 

  40. M. Letzgus, A. Brockhinke, K. Kohse-Höinghaus, LASKINν 2, Bielefeld University, Chemistry Department, Physical Chemistry 1, available at http://pc1.uni-bielefeld.de/~laskin, 2012

  41. J. Luque, D.R. Crosley, LIFBASE (version 2.0.6), Report MP 99-009, SRI International, Menlo Park, CA, 1999

  42. X. Mercier, E. Therssen, J.F. Pauwels, P. Desgroux, Chem. Phys. Lett. 229, 75 (1999)

    Article  Google Scholar 

  43. P. Nau, J. Krüger, A. Lackner, M. Letzgus, A. Brockhinke, Appl. Phys. B (2012, in press)

  44. E. Petersen, M. Kopp, N. Donato, F. Güthe, in Proceedings of ASME Turbo Expo 2011 GT2011, June 6–10, 2011, Vancouver, British Columbia, Canada (2011)

    Google Scholar 

  45. C.V.V. Prasad, P.F. Bernath, Astrophys. J. 426, 812 (1994)

    Article  ADS  Google Scholar 

  46. R. Sadanandan, W. Meier, J. Heinze, Appl. Phys. B 106, 717 (2012)

    Article  ADS  Google Scholar 

  47. A. Schocker, K. Kohse-Höinghaus, A. Brockhinke, Appl. Opt. 44, 6660 (2005)

    Article  ADS  Google Scholar 

  48. G.P. Smith, J. Luque, C. Park, J.B. Jeffries, D.R. Crosley, Combust. Flame 131, 59 (2002)

    Article  Google Scholar 

  49. G.P. Smith, C. Park, J. Schneiderman, J. Luque, Combust. Flame 141, 66 (2005)

    Article  Google Scholar 

  50. G.P. Smith, C. Park, J. Luque, Combust. Flame 140, 385 (2005)

    Article  Google Scholar 

  51. A. Tanabashi, T. Amano, J. Mol. Spectrosc. 215, 285 (2002)

    Article  ADS  Google Scholar 

  52. K.T. Walsh, M.B. Long, M.A. Tanoff, M.D. Smooke, Proc. Combust. Inst. 27, 615 (1998)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge important contributions to the experiments described in this article by Dr. Regina Brockhinke and Angela Seipel. We thank Professor Dr. Katharina Kohse-Höinghaus for generous support and discussions. Elke Goos (DLR Stuttgart) contributed to the thermodynamic reaction analysis. Deutsche Forschungsgemeinschaft (DFG) has funded this work under contracts KO 1363/21-2, PAK 116/1 and 116/2 and SFB 686 TP C5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brockhinke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockhinke, A., Krüger, J., Heusing, M. et al. Measurement and simulation of rotationally-resolved chemiluminescence spectra in flames. Appl. Phys. B 107, 539–549 (2012). https://doi.org/10.1007/s00340-012-5001-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5001-1

Keywords

Navigation