Skip to main content

Advertisement

Log in

Study of energy transfer processes in CH as prerequisite for quantitative minor species concentration measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Energy transfer effects on CH A-X (0,0) laser-induced fluorescence spectra have been studied for the first time in rich methane and acetylene atmospheric-pressure flames using a picosecond laser system in conjunction with a streak camera. Results allowed determination of typical fluorescence lifetimes of levels in the A state populated by rotational energy transfer (RET), and of state-dependent quenching. These values are used to extend the LASKIN simulation program that has originally been developed to study energy transfer processes in OH, for modelling of spectra of the CH A-X (0,0) transition. Results show good agreement between experiment and simulation both in the spectrally as well as in the temporally-resolved regime.

Additionally, a novel strategy for quantitative CH measurements relying on time-resolved broadband detection after excitation in the A-X (0,0) band is presented . This method allows determination of both the fluorescence lifetime and the quench-free amplitude of the fluorescence, which is directly proportional to the CH number density. Results obtained in acetylene flames show significantly higher quenching than expected from extrapolations using published coefficients. This discrepancy is most likely due to an incorrect value for the quenching of CH by collisions with CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kohse-Höinghaus: Prog. Energy Combust. Sci. 20, 203 (1994)

    Article  Google Scholar 

  2. K.C. Smyth, D.R. Crosley: In Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries, (Taylor, Francis, New York 2002), Chapt. 2, pp. 9–68

  3. Proc. Combust. Inst. 28 (2000)

  4. Proc. Combust. Inst. 29 (2002)

  5. A. Brockhinke, K. Kohse-Höinghaus: Faraday Discussions 119, 275 (2001)

    Article  ADS  Google Scholar 

  6. P. Andresen, A. Bath, W. Gröger, H.W. Lülf, G. Meijer, J.J. ter Meulen: Appl. Opt. 27, 365 (1988)

    Article  ADS  Google Scholar 

  7. A.C. Eckbreth: Laser Diagnostics for Combustion Temperature and Species (Gordon, Breach, Amsterdam, 1996)

  8. E.W. Rothe, Y. Gu, A. Chryssostomou, P. Andresen, F. Bormann: Appl. Phys. B. 66, 251 (1998)

    Article  ADS  Google Scholar 

  9. J.W. Daily, E.W. Rothe: Appl. Phys. B 68, 131 (1999)

    Article  ADS  Google Scholar 

  10. A.A.V. Kliner, R.L. Farrow: J. Chem. Phys. 110, 412 (1999)

    Article  ADS  Google Scholar 

  11. A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum: Appl. Phys. B 57, 85 (1993)

    Article  ADS  Google Scholar 

  12. M. Köllner, P. Monkhouse: Appl. Phys. B 61, 499 (1995)

    Article  ADS  Google Scholar 

  13. F. Bormann, T. Nielsen, M. Burrows, P. Andresen: Appl. Phys. B. 62, 601 (1996)

    Article  ADS  Google Scholar 

  14. M.W. Renfro, S.D. Pack, G.B. King, N.M. Laurendeau: Appl. Phys. B 69 , 137 (1999)

    Article  ADS  Google Scholar 

  15. A. Brockhinke, A. Bülter, J.C. Rolon, K. Kohse-Höinghaus: Appl. Phys. B 72, 491 (2001)

    Article  ADS  Google Scholar 

  16. M.A. Linne, A. Brockhinke: In Applied Combustion Diagnostics, (ed. by Taylor, Francis, New York 2002) Chapt. 5, pp. 128–154

  17. T. Nielsen, F. Bormann, M. Burrows, P. Andresen: Appl. Opt. 36, 7960 (1997)

    Article  ADS  Google Scholar 

  18. P. Beaud, P.P. Radi, D. Franzke, H.M. Frey, B. Mischler, A.P. Tzannis, T. Gerber: Appl. Opt. 37, 3354 (1998)

    Article  ADS  Google Scholar 

  19. M.W. Renfro, G.B. King, N.M. Laurendeau: Combust. Flame 122, 139 (2000)

    Article  Google Scholar 

  20. M.W. Renfro, A. Chaturvedy, N.M. Laurendeau: Combust. Sci. Technol. 169, 25 (2001)

    Article  Google Scholar 

  21. M.W. Renfro, K. Venkatesan, N.M. Laurendeau: Proc. Combust. Inst. 29, 2695 (2002)

    Article  Google Scholar 

  22. J. Warnatz, U. Maas, R.W. Dibble: Combustion, 2nd edn. (Springer Verlag, Heidelberg 1996)

  23. M.G. Allen, R.D. Howe, R.K. Hanson: Opt. Lett. 11, 126 (1986)

    Article  ADS  Google Scholar 

  24. P.H. Paul, J.E. Dec: Opt. Lett. 19, 998 (1994)

    Article  ADS  Google Scholar 

  25. J. Luque, R.J.H. Klein-Douwel, J.B. Jeffries, P. Smith, D.R. Crosley: Appl. Phys. B 75, 779 (2002)

    ADS  Google Scholar 

  26. K.T. Walsh, M.B. Long, M.A. Tanoff, M.D. Smooke: Proc. Combust. Inst. 27, 615 (1998)

    Article  Google Scholar 

  27. M. Tamura, P.A. Berg, J.E. Harrington, J. Luque, J.B. Jeffries, G.P. Smith , D.R. Crosley: Combust. Flame 114, 502 (1998)

    Article  Google Scholar 

  28. J. Luque, R.J.H. Klein-Douwel, J.B. Jeffries, D.R. Crosley: Appl. Phys. B 71, 85 (2000)

    Article  ADS  Google Scholar 

  29. N.L. Garland, D.R. Crosley: Chem. Phys. Lett. 134, 189 (1987)

    Article  ADS  Google Scholar 

  30. J.L. Cooper, J.C. Whitehead: J. Chem. Soc. Faraday Trans. 89, 1287 (1993)

    Article  Google Scholar 

  31. J.L. Cooper, J.C. Whitehead: J. Phys. Chem. 98, 8274 (1994)

    Article  Google Scholar 

  32. M.A. Blitz, M. Pesa, M.J. Pilling, P.W. Seakins: Chem. Phys. Lett. 322,, 280 (2000)

  33. R.N. Dixon, D.P. Newton, H. Rieley: J. Chem. Soc. Faraday Trans. II 83, 675 (1988)

    Article  Google Scholar 

  34. W. Chaung-Chi, C. Yu-Pern, C. Thou-Long, H. Hong-Yi, L. King-Chuen: J. Chem. Phys. 112, 10204 (2000)

    Article  Google Scholar 

  35. M. Kind, F. Stuhl, Y.R. Tzeng, M.H. Alexander, P.J. Dagdigian: J. Chem. Phys. 114, 4479 (2001)

    Article  ADS  Google Scholar 

  36. B. Nizamov, P.J. Dagdigian, Y.R. Tzeng, M.H. Alexander: J. Chem. Phys. 115, 800 (2001)

    Article  ADS  Google Scholar 

  37. P. Meden, M. Kind, F. Stuhl: J. Chem. Phys. 116, 2757 (2002)

    Article  ADS  Google Scholar 

  38. J. Luque, D.R. Crosley: Appl. Opt. 38, 1423 (1999)

    Article  ADS  Google Scholar 

  39. A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T.B. Settersten , M.A. Linne: Appl. Phys. B 69, 477 (1999)

    Article  ADS  Google Scholar 

  40. J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley: Appl. Phys. B 73, 731 (2001)

    Article  ADS  Google Scholar 

  41. C.D. Carter, J.M. Donbar, J.F. Driscoll: Appl. Phys. B 66, 129 (1998)

    Article  ADS  Google Scholar 

  42. M.S. Mansour, N. Peters, Y.C. Chen: Proc. Combust. Inst. 27, 767 (1998)

    Article  Google Scholar 

  43. Y. Chen, M.S. Mansour: Appl. Phys. B 64, 599 (1997)

    Article  ADS  Google Scholar 

  44. P.M. Doherty, D.R. Crosley: Appl. Opt. 23, 713 (1984)

    Article  ADS  Google Scholar 

  45. J.R. Lakowicz: Topics in Fluorescence Spectroscopy. Vol. 2: Principles (Plenum Press, New York 1991)

  46. K.J. Rensberger, M.J. Dyer, R.A. Copeland: Appl. Opt. 27, 3679 (1988)

    Article  ADS  Google Scholar 

  47. R. Kienle, M.P. Lee, K. Kohse-Höinghaus: Appl. Phys. B 62, 583 (1996)

    Article  ADS  Google Scholar 

  48. R. Kienle, M.P. Lee, K. Kohse-Höinghaus: Appl. Phys. B 63, 403 (1996)

    ADS  Google Scholar 

  49. U. Rahmann, W. Kreutner, K. Kohse-Höinghaus: Appl. Phys. B 69, 61 (1999)

    Article  ADS  Google Scholar 

  50. U. Rahmann, A. Bülter, U. Lenhard, R. Düsing, D. Markus, A. Brockhinke, K. Kohse-Höinghaus: LASKIN - A Simulation Program for Time-Resolved LIF-Spectra, Internal Rep., Uni. of Bielefeld, Fac. of Chem., Phys. Chem. I, http: //pc1.uni-bielefeld.de/∼laskin

  51. T.N. Brown, E.A. Colborn, J.K.G. Watson, F.D. Wayne: J. Mol. Spectrosc. 74, 294 (1979)

    Article  ADS  Google Scholar 

  52. M. Zachwieja: J. Mol. Spectrosc. 170, 285 (1995)

    Article  ADS  Google Scholar 

  53. J. Luque, D.R. Crosley: LIFBASE: Database and spectral simulation program (version 1.6), SRI Int. Rep. MP 99-009 (1999)

  54. S. Gordon, B.J. McBride: Computer Program for Calculation of Complex Chemical Equilibrium Compositions, and Applications, NASA RP-1311 (1994)

  55. W. Bauer, B. Engelhardt, P. Wiesen, K.H. Becker: Chem. Phys. Lett. 158, 321 (1989)

    Article  ADS  Google Scholar 

  56. T.A. Brunner, D. Pritchard: Adv. Chem. Phys. 50, 589 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brockhinke.

Additional information

PACS

06.60.Jn; 33.50.-j; 34.50.Ez

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bülter, A., Rahmann, U., Kohse-Höinghaus, K. et al. Study of energy transfer processes in CH as prerequisite for quantitative minor species concentration measurements. Appl. Phys. B 79, 113–120 (2004). https://doi.org/10.1007/s00340-004-1423-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1423-8

Keywords

Navigation